
Accurate Modeling of Organic Molecular Crystals by Dispersion-
Corrected Density Functional Tight Binding (DFTB)
Jan Gerit Brandenburg and Stefan Grimme*

Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms
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ABSTRACT: The ambitious goal of organic crystal structure prediction challenges
theoretical methods regarding their accuracy and efficiency. Dispersion-corrected
density functional theory (DFT-D) in principle is applicable, but the computational
demands, for example, to compute a huge number of polymorphs, are too high.
Here, we demonstrate that this task can be carried out by a dispersion-corrected
density functional tight binding (DFTB) method. The semiempirical Hamiltonian
with the D3 correction can accurately and efficiently model both solid- and gas-phase
inter- and intramolecular interactions at a speed up of 2 orders of magnitude
compared to DFT-D. The mean absolute deviations for interaction (lattice) energies
for various databases are typically 2−3 kcal/mol (10−20%), that is, only about two
times larger than those for DFT-D. For zero-point phonon energies, small deviations
of <0.5 kcal/mol compared to DFT-D are obtained.

SECTION: Molecular Structure, Quantum Chemistry, and General Theory

Accurate and efficient modeling of inter- and intramolecular
interactions both in the gas and solid phase of organic

molecules is mandatory for a variety of applications and
represents a very active research field.1−7 The theoretical
description of gas-phase dimers, supramolecular host−guest
complexes, and organic crystals mainly relies on the correct
description of noncovalent interactions. Crucial parts of these
intermolecular forces are the hydrogen bonding and van der
Waals (vdW) interactions.8 In principle, high-level quantum
chemical methods can seamlessly describe all of the local and
nonlocal interactions but are computationally too demanding
for large complexes and especially for molecular crystals of
larger molecules. Empirical potentials (force fields) and
London dispersion-corrected density functional theory (DFT-
D) are the mainly used alternatives.9 Recent developments and
applications of different DFT-D methods demonstrated their
predictive power in both molecular complexes and organic
solids.10,11 For example, our well-established semiclassical DFT-
D3 scheme successfully participated recently in the SAMPL4
blind test for prediction of host−guest association free
energies.12 It was further shown that semilocal density
functionals in a huge plane wave basis augmented with the
D3 London dispersion correction can calculate sublimation
energies with an accuracy of 1 kcal/mol.3,13 Similarly accurate
results are obtained with the Tkachenko−Scheffler (TS) many-
body dispersion correction (MBD)14,15 and E. Johnson’s
exchange dipole model (XDM).16 G. Beran proposed a
fragment-based hybrid many-body interaction model, which is
also capable of calculating lattice energies with chemical
accuracy.2,17 These methods have already been used in the
field of crystal structure prediction.18

Though having a good accuracy−cost ratio, the DFT-D
methods cannot be applied to thousands of large complexes or
organic crystals in a reasonable time. Especially for prescreening
of multiple conformations in organic crystal structure
prediction (or likewise in crystal structure refinement), faster
methods are required. Purely empirical force fields are typically
not accurate enough for a reasonable energy ranking of low-
lying structures, which results in a large number of cases that
have to be treated by DFT.19 This obvious gap between force
fields and DFT could be covered by semiempirical methods as
sketched in Figure 1. In this context, we recently reduced the
computational cost of DFT calculations by applying a small
atomic orbital basis set (of mainly double-ζ quality) and
correcting the arising basis set superposition error (BSSE) by a
semiempirical pair potential gCP.20 For plain Hartree−Fock in
a nearly minimal basis set, we additionally corrected empirically
for the basis incompleteness and compiled the HF-3c
method.21 Both approaches were successfully tested on organic
crystals as well.3,22

Here, we investigate the performance of the density
functional tight binding (DFTB) method DFTB3 for binding
(interaction) energies of small to large molecular gas-phase
complexes (6−177 atoms) and organic molecular crystals. This
method is based on a third-order expansion of the Kohn−Sham
total energy with respect to charge density fluctuations. The
arising matrix elements are modified by a self-consistent charge
(SCC) redistribution. The modification corresponds to an on-
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site repulsion for short distances and to a Coulomb interaction
at long distances with the correct Coulomb limit. In the latest
version, an additional damping of the pair interactions involving
hydrogen atoms is included. This significantly improves the
description of hydrogen-bonded systems and proton trans-
fer.23−26 We abbreviate this SCC-DFTB3 method as DFTB
throughout the Letter. This model Hamiltonian must be
additionally corrected to account for nonlocal electron
correlation effects, with the London dispersion interaction as
the most dominant contribution. Because the charge density of
the DFTB method is (mainly due to its minimal basis) not very
accurate, it is ideal to use a correction scheme that does not
explicitly depend on the electronic structure, and hence such an
augmentation in the TB context has been proposed already
some time ago.27

The atom-pairwise D3 correction solely uses the geometry
information to calculate the dispersion energy
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where C6/8
ij are the leading order dipole−dipole and dipole−

quadrupole dispersion coefficients and rij is the distance
between the atom pairs i,j.28 The s6 scaling coefficient is set
to unity to ensure the correct long-range behavior. The Becke−
Johnson29 rational damping function f(R0

ij) is used to match the
long- and medium-range dispersion contribution from D3 with
the semilocal correlation captured by DFTB.30 The C6
dispersion coefficients depend geometrically on the molecular
environment and are precalculated by time-dependent DFT
and utilizing the Casimir−Polder relation.31,32 Because of its
small numerical complexity, the D3 correction is ideally suited
for a coupling with inherently fast electronic structure methods
where more complicated density-based schemes (e.g., refs 33
and 34) would lead to a huge computational overhead.
In the following, two standard benchmark sets are

investigated. The molecular S6635 set consists of 66 small- to
medium-sized dimers in their equilibrium geometry. It contains
purely vdW-bonded, purely hydrogen-bonded, and mixed
systems. In the S66 × 8 set, the S66 dimers are considered at
eight different center of mass distances. This set is the defacto
standard for testing noncovalent interactions in gas-phase

dimers. The reference values are basis set extrapolated
CCSD(T) energies. Because similar high-level calculations are
not affordable for molecular crystals, reliable reference energies
can only be extracted from experiment. E. Johnson compiled a
test set of molecular crystals, which was extended and refined
by A. Tkatchenko.14−16 Similar to the S66 set, these X23
systems consist of purely vdW-bonded, purely hydrogen-
bonded, and mixed systems. The experimental sublimation
energies are explicitly back-corrected to electronic lattice
energies. In this way, one can directly compare the electronic
energies with the provided reference data in full analogy to S66.
Table 1 shows the mean absolute deviation (MAD) and mean

deviation (MD) of DFTB for both test sets. To put these values
into perspective, DFT (PBE) as well as semiempirical PM737

values are included. The individual values are given in the
Supporting Information (SI). The statistical data are separated
in the different bonding situations to identify the main error
sources. When judging the results, one should keep in mind
that the mean S66 × 8 dissociation energy and the mean X23
lattice energy are 4 kcal/mol (range from 0.0 to 19.5 kcal/mol)
and 20 kcal/mol (range from 6.5 to 40.6 kcal/mol),
respectively.
The uncorrected DFTB significantly underestimates the

binding in the S66 × 8 dimers by more than 54%. The MAD is
approximately 2 kcal/mol for all binding motives. This
(unsurprising) finding indicates that an important contribution
is missing in the model Hamiltonian. The dispersion correction
D3 reduces the mean error drastically with a residual MAD
below 1 kcal/mol. The comparison of the hydrogen-bonded
with the vdW-bonded systems shows that the main error
originates in a partially wrong description of the delicate
electrostatic and induction contributions in hydrogen bonds.
The MAD for the vdW systems of about 0.5 kcal/mol is
considered as very accurate and competitive to standard DFT.

Figure 1. A schematic view of the accuracy−computational cost ratio
for different methods is given. The accuracy is exemplarily given for
the calculation of organic crystal lattice energies. Wave function theory
methods (WFT) are expected to give the correct result in principle but
cannot be applied routinely. The gap between force fields and DFT-D
is highlighted.

Table 1. MAD and MD of the Dissociation and Lattice
Energies for the S66 × 8 and the X23 Test Seta

S66 × 8 X23

method MAD MD MAD MD

All Systems
DFTB 2.17 −2.17 12.29 −12.29
DFTB-D3 0.79 −0.42 2.48 −0.22
PBE-D3b 0.35 0.24 1.07 0.43
PM7c 0.73 −0.13

vdW-Bonded
DFTB 2.22 −2.22 14.31 −14.31
DFTB-D3 0.54 0.37 1.80 0.23
PBE-D3 0.27 0.01 0.86 0.06

H-Bonded
DFTB 2.36 −2.36 7.62 −7.62
DFTB-D3 1.30 −1.29 2.56 1.63
PBE-D3 0.55 0.55 1.27 1.21

Mixed
DFTB 1.88 −1.88 16.06 −16.06
DFTB-D3 0.49 −0.35 4.19 −2.64
PBE-D3 0.20 0.14 1.50 0.13

aData are given for uncorrected as well as dispersion-corrected (suffix
D3) methods. All values are in kcal/mol, and a positive MD denotes
an average overbinding. bPBE in a huge almost complete basis set
according to refs 3 and 36. cPM737 is currently not applicable to
crystals.
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To cross-validate this result, we additionally employ the
benchmark sets S22 (small gas-phase dimers38), X40
(halogenated gas-phase dimers39), L7 (large gas-phase dimers
and trimers40) with new DLPNO-CCSD(T)/ΔCBS/CP
references (unpublished results), and S12L (large host−guest
complexes41). The small DFTB-D3 MADs for these sets of
0.95, 1.66, 1.74, and 5.90 kcal/mol confirm the picture drawn
above. This also indicates that the S66 × 8 test set seems to be
representative for a large number of systems.36 Though the
results are worse than those for standard density functionals
(the MAD on the PBE-D3/large basis set level is 0.35 kcal/
mol36 for S66 × 8), it is an improvement over other
semiempirical methods if larger systems are considered.
While PM737 has a slightly smaller MAD on the S66 × 8 set,
it performs worse for the larger systems with MADs of 0.77,
1.69, 7.61, and 17.51 kcal/mol for the S22, X40, L7, and S12L
benchmark sets. Due to the large errors for larger complexes
(i.e., L7 and S12L), one cannot expect good PM7 results for
organic crystals. The semiempirical PM6-DH242,43 performs
slightly better than PM7. However, the larger deviations for L7
and S12L systems persist.
A similar picture of performance is observed for the lattice

energies of the molecular crystals in X23. Periodic systems are
most sensitive to the correct treatment of long-range
interactions. The underbinding tendency of DFTB is more
pronounced for X23 than that for S66, and its MAD is more
than 60% of the mean lattice energy. The errors for the X23
lattice energies drop significantly to a small MAD of 2.5 kcal/
mol on the DFTB-D3 level, which corresponds to only 12% of
the mean lattice energy. Note that the dispersion-corrected
DFTB-D3 is used without any electronic reparametrization,
which demonstrates the robustness of the method.
Figure 2 shows the individual values compared to the

reference energies. The error of the back-corrected reference

energies is estimated to be 1.2 kcal/mol.3 The linear correlation
coefficient is 0.68 and 0.94 for DFTB and DFTB-D3,
respectively. Similar to the molecular case, the MAD of the
purely vdW-bonded systems is lower by 1.8 kcal/mol, that is,
systems containing more complicated electrostatics (hydrogen-
and mixed bonding motifs) are described slightly worse. A
comparison between the performance for the gas-phase (S66 ×
8) and the solid-phase (X23) test sets is sketched in Figure 3.
Aside from prescreening and electronic structure calculations

of huge systems, DFTB-D3 can also be used as a cheaper
alternative for derivative calculations. These are needed for

instance to explicitly calculate the phonon spectrum and to
correct the electronic energies to enthalpies or free energies at
finite temperatures. We computed the vibrational contribution
to the X23 sublimation energies in the harmonic approximation
(unscaled frequencies) and compare the resulting energy
corrections with the recently published PBE-TS values.15 The
MAD between the two data sets is only 0.5 kcal/mol, which is
comparable to the results known from molecular complexes.41

For the calculation of the sublimation energy of a given crystal
structure, we propose the following procedure. First, optimize
the entire crystal structure including cell parameters at the
general gradient approximated DFT level PBE-D3 in a large
projector-augmented plane wave (PAW) basis. Then, calculate
a single-point energy at the higher hybrid functional level
PBE0-D3 at the PBE-D3 structure. Finally, correct for
vibrational contributions using DFTB-D3 frequencies. For
example, the frequency calculation of a cytosine crystal (in a
supercell with 156 atoms) takes less than 1 h on a standard
workstation with the dftb+ and dftd3 codes. In the DFT
single-point calculation, other functionals (e.g., BLYP, TPSS,
HSE06) or other London dispersion corrections (e.g., TS,
MBD, XDM) could be used for comparison.
In this work, we have augmented an existing DFTB

Hamiltonian (including full third-order correction, SCCs, and
special hydrogen bond damping) with the latest first-principles
London dispersion correction D3. The DFTB-D3 method was
evaluated for both mostly organic gas-phase as well as solid
structures with very promising results. The MAD of 2.5 kcal/
mol obtained for the X23 lattice energies is exceptionally small
for a semiempirical method. The analysis of different subsets in
the benchmarks illustrated that the main error source for the
DFTB-D3 method are the hydrogen-bonded systems. Although
their description has improved in going from DFTB1 to
DFTB3, this point clearly needs further improvements. The
potential of the combined DFTB-D3 approach for organic
crystal structure prediction and refinement was demonstrated
on the X23 test set. Furthermore, the vibrational corrections on
the DFTB-D3 level were compared to those obtained at the
dispersion-corrected DFT level and showed good mutual
agreement. In summary, the future for electronic-structure-
based organic crystal structure prediction is bright when a kind
of multilevel approach is employed.

■ COMPUTATIONAL METHODS
We utilized the DFTB Hamiltonian with full third-order
correction and SCCs. The SCC tolerance is 10−7 au. We used
the most recent Slater−Koster files provided by the group of M.
Elstner. The hydrogen-containing pair potentials were addi-

Figure 2. Correlation between the calculated DFTB and DFTB-D3
lattice energies with the experimental reference values. The gray
shading denotes the uncertainty of the references of approximately 1.2
kcal/mol.3

Figure 3. Normal error distributions for the benchmark sets S66 × 8
and X23. The newly evaluated method DFTB-D3 is highlighted.
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tionally damped with an exponent of 4.2, which is the
recommended value for proton transfers.23,25,26 The Brillouin
zone was sampled with a Γ-centered grid with at least 0.05 Å−1

k-points, generated via the Monkhorst−Pack scheme.44 The
London dispersion correction D3 was used in the Becke−
Johnson damping variant with parameters s8 = 0.5883, a1 =
0.5719, and a2 = 3.6017. The parameters were fitted on the S66
reference energies similar to the procedure in the original
publication.28 A similar DFTB-D3 parametrization was already
tested on the S12L set and for calculations of electron impact
mass spectra.11,45 The X23 geometries were optimized on the
DFTB-D3 level with a fixed unit cell with the approximate
normal coordinate rational function optimizer ANCOPT46,47

until the atomic forces were below 10−4 au. For all other
benchmarks, the standard single-point energy approach was
applied. Phonon frequencies were calculated at the Γ-point in a
supercell approach. The vibrational corrections to the lattice
enthalpy were calculated in the harmonic approximation similar
to the reference approach.15 In the X40 test set, systems
including Br or I were excluded, and the Fe-containing complex
in the S12L set was also disregarded due to missing Slater−
Koster files.

■ ASSOCIATED CONTENT
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A table of calculated lattice energies, experimental sublimation
enthalpies, and vibrational contributions along with a computa-
tional methodology and DFTB-D3 optimized geometries for
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P. Accuracy of Quantum Chemical Methods for Large Noncovalent
Complexes. J. Chem. Theory Comput. 2013, 9, 3364−3374.
(41) Grimme, S. Supramolecular Binding Thermodynamics by
Dispersion Corrected Density Functional Theory. Chem.Eur. J.
2012, 18, 9955−9964.
(42) Korth, M. Empirical Hydrogen-Bond Potential FunctionsAn
Old Hat Reconditioned. ChemPhysChem 2011, 12, 3131−3142.
(43) Korth, M. Third-Generation Hydrogen-Bonding Corrections for
Semiempirical QM Methods and Force Fields. J. Chem. Theory
Comput. 2010, 6, 3808−3816.
(44) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone
Integrations. Phys. Rev. B 1976, 13, 5188−5192.
(45) Grimme, S. Towards First Principles Calculation of Electron
Impact Mass Spectra of Molecules. Angew. Chem., Int. Ed. 2013, 52,
6306−6312.
(46) Grimme, S. ANCOPT: Approximate Normal Coordinate Rational
Function Optimization; University of Bonn: Bonn, Germany, 2014.
(47) Eckert, F.; Pulay, P.; Werner, H.-J. Ab Initio Geometry
Optimization for Large Molecules. J. Comput. Chem. 1997, 18, 1473−
1483.

The Journal of Physical Chemistry Letters Letter

dx.doi.org/10.1021/jz500755u | J. Phys. Chem. Lett. 2014, 5, 1785−17891789


