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Water in different phases under various external conditions is very important in bio-chemical systems
and for material science at surfaces. Density functional theory methods and approximations thereof
have to be tested system specifically to benchmark their accuracy regarding computed structures and
interaction energies. In this study, we present and test a set of ten ice polymorphs in comparison to
experimental data with mass densities ranging from 0.9 to 1.5 g/cm3 and including explicit corrections
for zero-point vibrational and thermal effects. London dispersion inclusive density functionals at
the generalized gradient approximation (GGA), meta-GGA, and hybrid level as well as alternative
low-cost molecular orbital methods are considered. The widely used functional of Perdew, Burke
and Ernzerhof (PBE) systematically overbinds and overall provides inconsistent results. All other
tested methods yield reasonable to very good accuracy. BLYP-D3atm gives excellent results with mean
absolute errors for the lattice energy below 1 kcal/mol (7% relative deviation). The corresponding
optimized structures are very accurate with mean absolute relative deviations (MARDs) from the
reference unit cell volume below 1%. The impact of Axilrod-Teller-Muto (atm) type three-body
dispersion and of non-local Fock exchange is small but on average their inclusion improves the
results. While the density functional tight-binding model DFTB3-D3 performs well for low density
phases, it does not yield good high density structures. As low-cost alternative for structure related
problems, we recommend the recently introduced minimal basis Hartree-Fock method HF-3c with a
MARD of about 3%. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916070]

I. INTRODUCTION

Computationally efficient electronic structure methods
are nowadays extensively used in (bio)chemistry, solid
state physics, and material science. In this regard, density
functional theory (DFT) has emerged as “work horse” for
many applications and is still an active research field of
general interest.1 DFT provides an excellent compromise
between accuracy and computational cost. Even more efficient
semiempirical methods have gained an increased importance
for large scale screenings of numerous conformers and in
the field of molecular dynamics beyond the classical force
field approximation. However, both semi-local DFT and
semiempirical approximations thereof are not capable of
describing long-range electron correlation effects leading to
the important London dispersion interactions.2 In the last
decade, this flaw and its correction was an intense research
topic and an explicit account of London dispersion is now
standard in DFT and semiempirical frameworks.3–5 For further
details on these methods, we refer to Refs. 6 and 7 with some
review character.

Water in its various phases is of utmost importance
in biological systems.8 The special physical chemistry of
water systems covers thermodynamical properties, critical
phenomena, and chemical reactions.9 Theoretical methods
shall help and guide experimentalists in this regard which

a)Electronic mail: grimme@thch.uni-bonn.de

requires an accurate treatment of the various condensed phases
of water. This primarily involves the description of (mostly
non-covalent) interaction energies and resulting structures.
Recently, some efforts were undertaken to perform relatively
high-level MP2 and random phase approximation (RPA)
(energy and gradient) calculations of liquid water and ice,
but these are presently only possible with huge computational
resources.10 Especially, the dynamics of biomolecules in water
and of water at solid surfaces is an active research field with
many challenges.11

Because DFT and semiempirical methods by construction
contain some empirical elements, their careful benchmarking
is mandatory. In the past, most DFT benchmarks focused
on isolated molecules, dimers, and small clusters (e.g.,
Refs. 12–14). Presently, only one common benchmark set
for organic solids exists.15 In this so-called X23 set, only two
polymorphs are included and systems with strong hydrogen
bonds are under-represented. Previous studies investigated
some ice polymorphs with mostly PBE based density
functionals (DFs) with and without corrections for London
dispersion effects.16 Recently, Kresse and coworkers applied
RPA to various ice modifications, and for some structures,
embedded many-body expansions at the “gold standard”
coupled-cluster single double (triple) (CCSD(T)) level have
been used .17

In the present study, we investigate a selection of ten
experimentally studied ice polymorphs. The performance of
various DFs at the generalized gradient approximation (GGA),

0021-9606/2015/142(12)/124104/11/$30.00 142, 124104-1 © 2015 AIP Publishing LLC
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meta-GGA, hybrid, and (range separated) hybrid level is
investigated. Both the structure and corresponding lattice
energy are analyzed. Additionally, some low cost molecular
orbital (MO) based methods which showed promising
accuracy previously7 are tested. Furthermore, the importance
of an accurate treatment of London dispersion even in systems
dominated by hydrogen-bonding is highlighted.

We first present the ten ice polymorphs under consider-
ation with the experimental references in Sec. II A. Section II B
shortly summarizes the computational details. We correct the
X-ray structures for zero-point and thermal effects as described
in Sec. II C. The main results of this study are given in Sec. III,
separated into a potential surface analysis of the high density
ice VIII (Sec. III A), a structure benchmark (Sec. III B), a
lattice energy benchmark (Sec. III C), and a comparison to
results for gas phase water clusters (Sec. III D). Finally, a
conclusion with recommended methods is given in Sec. IV.

II. BENCHMARK SETUP

A. Systems under consideration

We have compiled the ICE10 set by combining ten
different ice polymorphs as summarized in Table I. Their
structures were determined by low temperature neutron
diffraction experiments. The systems contain 8–28 water
molecules per crystal unit cell and all obey the “ice rules”
(Bernal-Fowler rules).18 We consider four proton ordered and
six proton disordered systems. The proton ordered crystals
typically occur at higher densities, where the hydrogens are
at fixed positions with low entropy. The unit cell volumes
(per molecule) vary between 18 and 32 Å3. Because the
experimental detection and accurate placement of hydrogen
atoms is challenging, we use the theoretical unit cell volume
(which corresponds to a certain mass density) as most sensitive
and reliable structure quality criterion. The sublimation
enthalpies of systems 1-7 were determined experimentally and
extrapolated to electronic (zero-point vibrational exclusive)
lattice energies at 0 K. These reference energies can be directly
compared to the calculated ones in order to judge the quality
of a theoretical method. For systems 7-10, no experimental
sublimation data are available. We give theoretical estimates
in Table I at our “best” theoretical level, which can be used
as reference for methods at a lower theoretical level like
GGA density functionals, small basis set calculations, or
semiempirical methods.

In Figure 1, we show a single unit cell for each crystal.
One can see the variety of different hydrogen bond networks
with proton ordered conformations and proton unordered
structures. Table I summarizes all important properties of the
ten crystals. When multiple experimental data are available,
we give both volumes and mass densities and use the latest
published values in comparisons with theory.

B. Computational details

The DFT calculations are mostly conducted with the
VASP program package.27 The projector augmented plane-
wave method (PAW) is used with hard pseudo-potentials

constructed by Blöchl and Kresse.28 In order to approach the
basis set limit, a huge PAW energy cutoff of 1000 eV is
used. Detailed convergence tests showed that this is required
in unconstrained geometry optimizations. In smaller basis
sets, artificial Pulay stress can lead to too small unit cell
volumes. For instance, an optimized Ih structure with PAW
cutoff of 600 eV has a 2% smaller unit cell compared to the
1000 eV basis set calculation. That the basis set limit is indeed
reached was confirmed by a corresponding potential energy
scan. Similar effects have been observed before in organic
crystals.29 In the following, the 1000 eV PAW basis is used if
not mentioned otherwise.

We apply several GGA functionals (PBE,30 RPBE,31

revPBE,32 and BLYP33), the meta-GGAs TPSS34 and M06L,35

two global hybrid functionals (PBE036 and B3LYP37), and
the range-separated hybrid functional HSE06.38 Because of
the significantly higher computational demands, the hybrid
functionals are only used for single-point energy calculations.
The single-point energy calculations were consistently done
on the PBE-D3 structures. The non-covalent geometries are
typically less sensitive to the inclusion of Hartree-Fock
exchange compared to the impact on the lattice energy. Though
some functionals are shown to yield better geometries, we
choose the PBE-D3 level. This is the standard procedure
conducted by our group, and it is consistent with other
approaches, e.g., Tkatchenko and coworkers calculate the
PBE0-MBD energies on PBE-Tkatchenko-Scheffler (PBE-
TS) geometries.15,16

Though ice forms complex networks of hydrogen bonds
with large electrostatic and induction contributions to the
binding energy, London dispersion forces cannot be neglected.
In order to investigate its importance, all methods are applied
with and without the D3 London dispersion correction.3 It is
applied in the most recent Becke-Johnson damping variant.39

Only M06L is used with the zero damping scheme (denoted
by D3(0)) to minimize the double counting of short-range
dispersion effects, which are covered by the meta-GGA. For
final single point energies, our standard three-body dispersion
term (of Axilrod-Teller-Muto (ATM) type40) is included and
will be indicated by the superscript atm.

Due to the increased importance of low-cost methods
as a bridge between first-principles DFT and classical
force fields, some alternative approaches are tested as well.
We conduct plain B3LYP/6-31G∗ calculations with atom-
centered Gaussian basis sets of double-zeta quality with the
CRYSTAL14 program.41 Additionally, a minimal basis set
Hartree-Fock approach with corrections for dispersion (D3),
basis set superposition error (gCP42), and short-range basis set
error (SRB), dubbed HF-3c, is applied.43 HF-3c frequencies
are scaled by 0.86 as suggested in its original publication.

As the computationally fastest here considered method,
the dispersion corrected density functional tight-binding
DFTB3-D344,45 is applied. We use the latest third order
version with empirical damping of hydrogen containing
pair-potentials and self-consistent charge redistribution as
implemented in dftb+.46 The 3OB Slater-Koster files
constructed by Elstner and coworkers are used.47 The latter
two methods showed an excellent performance on benchmark
sets for general non-covalent interactions.7 The D3, gCP, and

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  131.220.44.190 On: Tue, 15 Mar

2016 13:09:06



124104-3 Brandenburg, Maas, and Grimme J. Chem. Phys. 142, 124104 (2015)

TABLE I. Systems contained in the ICE10 benchmark set. Crystallographic specifications, experimental densities
(measured at temperature Texp), and lattice energies extrapolated to 0 K are given.

No. Polymorph #H2O
Bravait
lattice Spacegroup Protonsa Texp Vol. ρ Elat

1 Ih19 16 Hexagonal P63/mmc Disordered 10 32.05,
32.50

0.93,
0.92

14.07

2 II20 12 Rhombohedral R3 Ordered 0 24.97,
24.63

1.20,
1.21

14.05

3 III21 12 Tetragonal P41212 Disordered 90 25.69 1.16 13.85
4 VI22 10 Tetragonal P42/nmc Disordered 98 22.84 1.31 13.68
5 VII21 16 Cubic Pn3m Disordered 90 20.26 1.48 13.07
6 VIII23 8 Tetragonal I41/amd Ordered 0 20.09,

18.61
1.49,
1.61

13.31

7 IX24 12 Tetragonal P41212 Ordered 30 25.63,
25.80

1.17,
1.16

13.97

8 XIII25 28 Monoclinic P21/a Ordered 80 23.91 1.25 13.95b

9 XIV25 12 Orthorhombic P212121 Ordered 80 23.12 1.29 13.74b

10 XV26 10 Tetragonal P1 Ordered 80 22.45 1.33 13.48b

aUnit cell volume per molecule is given in Å3, molecular mass density in g cm−3, lattice energy (at 0 K) in kcal mol−1, and
temperature in K.
bTheoretical estimate at the PBE0-D3atm level with removed systematic shift.

HF-3c methods are implemented in a CRYSTAL14 developer
version and will be generally available in its next release.

The Brillouin zone is sampled with dense k grids of
approximately 0.02 Å−1 generated via the Monkhorst-Pack
scheme. The Γ-centered number of k-points is given in
the supplementary material.48 Structures are fully optimized
without symmetry constraints until all forces are below
0.005 eV/Å. Especially for flat potential energy surfaces
(PESs), tight convergence thresholds are necessary.49 In the
PAW calculations for a single (isolated) water molecule, a
large unit cell (12 Å) is employed to minimize the interaction
with its periodic images.

C. Correction for zero-point energies

The measurements of structure and lattice energy have
been conducted at finite temperature (up to 100 K). The
experimental lattice energies provided by Whalley were

extrapolated to 0 K and zero-point vibrational energies
(ZPVEs) have been removed.21 The accuracy of the
extrapolated energies has been verified by high-level diffusion
quantum Monte Carlo (DMC) and embedded many-body
CCSD(T) calculations.17,50 We further assume that the thermal
contribution to the ice density (from 0 to 98 K) is rather small,
and the measured structure can be treated as equilibrium (Re)
geometry as discussed further below.

However, the ZPVE is substantial and cannot be
neglected. In order to provide an easy usable benchmark,
we estimate its effect on the unit cell volume (and the mass
density, respectively) for all ten systems. For each system,
we perform constrained (constant volume) optimizations
around the electronic equilibrium geometry with scaled unit
cell volumes of 80%Ve, 90%Ve, 95%Ve, 100%Ve, 105%Ve,
110%Ve, 120%Ve, and 130%Ve. On these optimized structures,
the vibrational frequencies are computed in the harmonic
approximation. The ZPVE together with the Bose-Einstein

FIG. 1. Systems contained in the ICE10 benchmark set. The perspective projection of a single unit cell is shown.
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FIG. 2. Electronic energy surface E(V ) and free energy surface F(V ) on the
HF-3c level for the ice Ih polymorph compared to the experimental volume
V

ref
0 . The free energy F includes zero-point and thermal contributions in the

harmonic approximation.

occupied phonon modes leads to the free energy,

F(V ) = E(V ) +

q

*.
,

~ωq(V )
2

+
~ωq(V )

e
~ωq(V )
kBT − 1

+/
-
. (1)

The phonon modes with frequencies ωq(V ) depend on the
volume V . Therefore, the correction to the electronic energy
also depends on the volume. To the data points F({Vi}) and
E({Vi}), we fit a Murnaghan equation of state,

E,F(V ) = Ee,0 +
Be,0V

B′
e,0(B′e,0 − 1)

× *
,
B′e,0

(
1 −

Ve,0

V

)
+

(
Ve,0

V

)B′
e,0
− 1+

-
, (2)

and extract the equilibrium volumes Ve and the free energy
volumes V0. The bulk modulus B and its derivative B′ are not
further analyzed.

As shown below, the HF-3c method provides very reason-
able potential energy surfaces at rather low computational
costs. This makes it an ideal choice for the free energy calcula-
tions. Therefore, the total energy Etot(V) in the above scheme
is evaluated at the HF-3catm level (ATM three-body term

included). In order to judge the accuracy of this HF-3c based
back-correction, we compare it for system Ih and VIII with
values from Murray and Galli.51 They calculate vibrational
corrections to the volume at the vdW-DF2 level of 1.9%
and 5.8%, respectively. The deviation to the corresponding
HF-3c corrections (3.6% and 5.1%) is rather small. While
they also compute PBE based corrections, we believe that
the comparison to the apparently wrong PBE potential (see
below) should be avoided. Because the two examples cover
both extremes (high and low densities) of the ice phases,
we expect the results to be transferable to the other sys-
tems. In our experience, the steepness of the intermolecular
DFT potential typically increases with higher HF exchange,
which is systematically removed by the frequency scaling. The
HF-3c potential energy surface (PES) of ice Ih is shown in
Figure 2.

Apparently, the equation of state is a good model around
the equilibrium. The ZPVE has two effects. First, it shifts the
minimum to higher energies by approximately 8 kcal/mol.
Additionally, the free energy minimum occurs at ≈4% larger
unit cell volume. Compared to the significant ZPVE effect,
the impact of the three-body dispersion (ATM) term is with
0.3% rather small. The impact of the thermal-vibrational
contributions at these low temperatures is tiny (<0.1%) and
the construction of a large supercell for the phonon calculation
is not necessary. The unit cell volume extracted from the free
energy surface V0 is very close to the experimental value with
a deviation below 2%.

In Table II, we summarize the equilibrium volumes
calculated by HF-3c together with the measured volumes V0
and the “experimental” equilibrium volumes V ref

e . If different
experimental measurements are available, we use the latest
published values (first value given for volume and density
in Table I). We propose the back-corrected volumes V ref

e as
reference benchmark values, which can be compared to free
optimizations on the electronic energy surface. The increase of
the volume due to free energy contributions is on average 3.7%
with a standard deviation of 1.0%. We observe an increased
correction with increasing density (linear correlation with
correlation coefficient R2 = 0.7), which is expected. However,

TABLE II. Correction of equilibrium volumes Ve to free-energy volumes V0 due to ZPVE and thermal energies
calculated at the HF-3catm level.

Theorya Experimentb

No. V0 Ve ∆V /V0 (%) V0 V
ref
e (±1.2%) ρ

ref
e

1 31.43 30.31 3.6 32.05 30.91 0.96
2 24.67 23.68 4.0 24.97 23.97 1.25
3 26.97 26.55 1.6 25.69 25.29 1.18
4 21.85 21.03 3.8 22.84 21.98 1.36
5 18.86 17.96 4.8 20.26 19.28 1.55
6 18.93 17.96 5.1 20.09 19.06 1.57
7 25.81 25.14 2.6 25.63 24.97 1.20
8 23.29 22.43 3.7 23.91 23.03 1.30
9 22.56 21.72 3.7 23.12 22.26 1.34
10 22.01 21.15 3.9 22.45 21.58 1.38

aVolumes given in Å3 and densities in g/cm3.

bExperimental Ve estimated as V ref
e =V

ref
0

(
1+

V calc
e −V calc

0
V calc

0

)
with V calc at the HF-3c level.
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this is only a rough trend, and the specific volume expansion
depends non-trivially on the geometry.

III. RESULTS AND DISCUSSION

A. Potential energy surface of ice VIII

We first investigate the potential energy landscape of
the high density ice polymorph VIII in some detail. We
calculate the electronic PES by scaling the lattice vectors of
the minimum geometry and performing a constraint volume
optimization as described in the previous paragraph. This
illustrative example is shown in Figure 3 for PBE, PBE-D3,

FIG. 3. Electronic energy surface of the ice VIII polymorph on various the-
ory levels compared to the experimental references. Zero-point and thermal
effects are explicitly excluded from the reference energy E

ref
e and reference

volume V ref
e .

RPBE-D3, revPBE-D3, TPSS-D3, TPSS-D3atm, HF-3catm, and
DFTB3-D3atm to demonstrate the typical behavior of these
methods. For an easier comparison, we show in each plot the
PBE and PBE-D3 potentials for comparison.

The minima of all methods determined via the PES
fit agree well with the free optimizations. Especially for
the calculations in the PAW basis, this is an important
test for basis set completeness and the applied geometry
convergence criteria. Plain PBE gives significantly too large
lattice parameters resulting in an unit cell volume which
is overestimated by 7%. The corresponding lattice energy
of 10.9 kcal/mol is too small by 2.4 kcal/mol. The D3
dispersion correction leads to much better structures, i.e., the
unit cell volume of PBE-D3 deviates from the reference by
less than 0.2%. However, the minimum is significantly too low
(overestimated lattice energy). The PBE functional is known to
overestimate hydrogen bonding52 which is very pronounced
in the ice crystals with many strong hydrogen bonds. The
physically correct inclusion of London dispersion lowers the
energy further and leads to the observed effect. The revised
versions RPBE and revPBE were constructed to give more
reasonable energies for these kind of systems. Both potentials
are rather similar. The lattice energy is indeed improved (error
of RPBE-D3 below 1 kcal/mol). However, the minimum
corresponds to a by 3.7% too large unit cell. The behavior
that revPBE sometimes deteriorates the good PBE structures
was already recognized by the authors of PBE for covalent
bonding.53 Of all PBE variants and successors, respectively,
TPSS-D3 performs best with accurate and consistent lattice
energy and structure. The inclusion of the ATM term has small
effects, but overall improves the results. For the geometries, we
estimate the three-body contribution by a potential energy scan
(see Sec. II C) and scale the corresponding TPSS-D3 unit cell
volumes. The lattice energy of TPSS-D3atm deviates by only
0.2 kcal/mol from the reference and the cell is 3.6% too small,
which we consider reasonably good. Interestingly, the internal
structures of covalently bound, medium-sized molecules are
systematically too large at the TPSS-D3 level, and this also
holds for the X23 set of molecular crystals.14,53 Apparently,
this cannot be directly transferred to the ice phases where the
density mainly depends on the non-covalent hydrogen bond
lengths.

The computational cost of all non-hybrid DFT methods is
practically identical, and only the meta-GGA TPSS is slightly
more expensive than the GGAs. Two low cost methods,
namely, HF-3c and DFTB3-D3, are included in Figure 3.
In the HF-3c method, the Hartree-Fock part is evaluated in
a minimal GTO basis set, which leads to a speed-up of ≈50
compared to the DFT/PAW calculations. Notably, however,
the corresponding PES is close to the reference. The lattice
energy is overestimated by 1.1 kcal/mol and the unit cell
is by 6.4% too small. Especially, the good structure and
reasonable PES shape is important for the low-cost methods
which are often used for geometry optimization and frequency
calculations. In the tight-binding model DFTB3, no three-
and four-center integrals have to be evaluated. This yields
an additional speed up of two orders of magnitude compared
to HF-3c but on the other hand introduces some significant
errors. The important many-center contributions are missing,
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which leads to a wrong repulsive potential, especially at
high densities. The lattice energy is overestimated, but the
deviation of 3.4 kcal/mol is acceptable. The system specific
results discussed so far are supported by the statistical analysis
of the whole ICE10 benchmark set given in Secs. III B and
III C.

B. Equilibrium structures for ICE10

In the following, we analyze the equilibrium structures of
the full ICE10 benchmark set. Correct structures are in general
important for the application of more involved electronic
structure methods. For instance, an embedded cluster approach
with high-level correlated wavefunction methods relies on
accurate input geometries. Especially for localized correlation
methods, analytical gradients are not feasible and therefore
good DFT structures are needed. The ICE10 systems are all
optimized with the (meta-)GGA density functionals and the
three low-cost methods. Note that the optimization with a
hybrid functional in a nearly complete PAW basis is currently
not feasible on standard work stations. Optimizations with the
meta-GGA M06L are not performed because of numerical
problems (SCF convergence).

In Table III, the experimental and theoretical unit cell
volumes are summarized. We additionally give the mean
relative deviation (MRD) and the mean absolute relative
deviation (MARD) with respect to the reference using 10

data points. For selected methods, we show a graphical
representation of the unit cell volume in Figure 4.

All plain semi-local density functional approximations
(PBE, RPBE, revPBE, BLYP, and TPSS) produce significantly
too large volumes with MARDs ranging from 4% to 24%.
The behavior of the PBE variants is very different, though
their mathematically similar functional form. Inclusion of the
D3 dispersion correction clearly improves the results and all
MARDs are below 4%. This demonstrates the importance of
long-range London dispersion effects even though a significant
contribution to the binding in ice is due to electrostatic
and induction effects. Interestingly, the PBE-D3 volumes are
underestimated, while the revised PBE variants overestimate
them. The effect of including the three-body dispersion is
rather small, but on average improves the results. In general,
all dispersion corrected density functionals evaluated in a
large PAW basis set can be recommended. BLYP-D3atm

performs exceptionally good with a MARD of only 1%
without systematic shift. This is in agreement with recent
results for the properties of liquid water.54

However, the PAW based free optimizations can be
computationally expensive. Therefore, we tested the low-cost
methods introduced in the previous paragraph. Somewhat
surprisingly, B3LYP in a small 6-31G∗ basis set performs
well. This is due to an error compensation between the
missing long-range London dispersion and the artificial basis
set superposition error.55 The good result for the ice crystals

TABLE III. Comparison of calculated unit cell volumes of the ICE10 benchmark set with the experimental
reference.

1 2 3 4 5 6 7 8 9 10 MRD MARDa

Expt. reference

(V ref
e ) 30.9 24.0 25.3 22.0 19.3 19.1 25.0 23.0 22.3 21.7 . . . . . .

DFT
PBE 30.2 24.5 26.4 22.3 20.4 20.4 26.2 23.6 22.9 22.4 3.1 3.6
RPBE 33.7 29.0 30.5 26.9 26.2 26.2 30.2 28.0 27.4 27.0 23.7 23.7
revPBE 33.1 28.0 29.8 25.9 24.6 24.5 29.8 27.1 26.4 26.0 19.1 19.1
BLYP 32.2 26.3 29.0 23.9 22.0 22.0 27.5 25.3 24.5 24.1 10.9 10.9
TPSS 30.5 24.8 26.7 22.5 20.0 19.9 27.0 23.9 23.2 22.6 3.9 4.1

DFT-D
PBE-D3 29.1 23.2 24.4 20.9 18.9 19.1 24.1 22.2 21.5 21.1 −3.2 3.2
RPBE-D3 30.6 24.4 25.6 22.0 19.7 19.6 25.4 22.2 22.6 22.1 1.0 1.8
revPBE-D3 30.4 24.2 25.4 21.7 19.7 19.7 25.3 23.1 22.3 21.8 0.7 1.3
BLYP-D3 30.4 23.9 24.9 21.4 19.4 19.4 24.5 22.8 22.0 21.5 −0.8 1.3
TPSS-D3 29.3 23.2 24.6 20.8 18.2 18.2 24.5 22.2 21.5 21.0 −3.8 3.8

DFT-Datm

PBE-D3atm 29.2 23.3 24.6 21.0 19.0 19.2 24.3 22.4 21.6 21.2 −2.7 2.8
RPBE-D3atm 30.7 24.6 25.8 22.1 19.8 19.8 25.6 22.4 22.7 22.2 1.6 2.3
revPBE-D3atm 30.5 24.3 25.7 21.9 19.9 19.8 25.5 23.2 22.4 22.0 1.3 1.7
BLYP-D3atm 30.5 24.0 25.2 21.5 19.5 19.5 24.7 22.9 22.1 21.6 −0.3 1.0
TPSS-D3atm 29.4 23.3 24.8 21.0 18.3 18.3 24.7 22.4 21.6 21.1 −3.2 3.2

Low-cost
B3LYP/6-31G∗ 30.1 23.7 24.9 21.3 19.1 19.1 24.7 22.9 21.9 21.4 −0.5 2.1
HF-3catm 30.1 23.6 26.5 21.0 18.0 18.0 25.0 22.4 21.7 21.1 −2.4 3.3
DFTB3-D3atm 30.1 21.8 18.7 18.7 15.5 15.5 20.6 19.4 19.4 18.6 −15.1 15.1

aVolumes are given in Å3. Mean relative deviations (MRDs) and mean absolute relative deviations (MARDs) are given in %.
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FIG. 4. Unit cell volume in Å3 of the ten ice polymorphs for selected methods compared to the reference. Note the significant deviation between the raw X-ray
data and the back-corrected reference values.

cannot be generally transferred to other systems. For instance,
plain B3LYP in a similar SVP basis set was shown to perform
badly on various molecular crystals.42 HF-3c is evaluated in
an even smaller minimal basis set but performs only slightly
worse compared to the dispersion corrected functionals. The
MARD is only 3.3% and at the same time a speed up of 50–100
is achieved compared to the TPSS-D3/PAW calculations. We

have recently shown that the combination of the DFTB3 model
with the D3 correction can describe various organic molecular
crystals reasonably well.45 Unfortunately, the geometries of
the ice crystals are not satisfactory. The volumes are on
average too small by 15%, and the largest errors occur for
the high density phases. Only the structure of the most stable
low density ice Ih can be reproduced with DFTB3-D3 to

TABLE IV. Comparison of calculated lattice energies of the ICE10 benchmark set to the experimental reference.

1 2 3 4 5 6 7 8 9 10 MD MADa

Expt. reference

(Eref
lat

) 14.1 14.1 13.9 13.7 13.1 13.3 14.0 . . . . . . . . . . . . . . .

DFT
PBE 15.3 13.5 14.1 12.6 10.9 10.9 14.2 13.3 14.0 12.6 −0.6 1.1
RPBE 11.3 9.4 10.2 8.6 6.8 6.8 10.3 9.3 9.0 8.5 −4.7 4.7
revPBE 11.5 9.5 10.3 8.5 6.7 6.7 10.4 9.3 8.9 8.5 −4.7 4.7
BLYP 12.8 10.8 11.5 9.9 8.0 8.0 11.5 10.6 10.3 9.8 −3.3 3.3
TPSS 14.0 11.9 12.6 10.9 9.1 9.1 12.8 11.7 11.3 10.8 −2.2 2.2
M06L 11.2 12.0 11.6 12.4 13.5 13.4 11.6 12.0 12.2 12.3 −1.5 1.6

DFT-D
PBE-D3 17.4 16.3 16.6 15.7 14.4 14.4 16.7 16.2 16.0 15.6 2.2 2.2
RPBE-D3 15.1 14.1 14.4 13.7 12.5 12.5 14.5 14.0 13.9 13.6 0.1 0.5
revPBE-D3 15.2 14.4 14.6 14.0 12.8 12.8 14.7 14.3 14.1 13.9 0.4 0.6
BLYP-D3 15.9 15.2 15.3 14.8 13.7 13.7 15.5 15.1 15.0 14.7 1.1 1.1
TPSS-D3 16.4 15.2 15.6 14.7 13.5 13.4 15.7 15.1 14.9 14.6 1.2 1.2
M06L-D3(0) 12.0 12.9 12.5 13.3 14.6 14.5 12.5 13.0 13.1 13.3 −0.5 1.3

DFT-Datm

PBE-D3atm 17.2 16.1 16.4 15.5 14.2 14.2 16.5 16.0 15.8 15.4 2.0 2.0
RPBE-D3atm 15.0 14.0 14.3 13.5 12.3 12.3 14.4 13.8 13.7 13.4 0.0 0.6
revPBE-D3atm 15.1 14.2 14.5 13.8 12.6 12.6 14.6 14.1 13.9 13.7 0.2 0.5
BLYP-D3atm 15.8 15.0 15.2 14.6 13.4 13.4 15.3 15.0 14.8 14.5 1.0 1.0
TPSS-D3atm 16.3 15.1 15.4 14.4 13.2 13.2 15.6 15.0 14.7 14.4 1.0 1.1
M06L-D3(0)atm 11.9 12.7 12.3 13.1 14.3 14.2 12.4 12.8 12.9 13.1 −0.7 1.3

DFT-Datm Hybrid
PBE0-D3atm 15.8 14.9 15.0 14.4 13.4 13.3 15.2 14.8 14.6 14.3 0.8 0.8
B3LYP-D3atm 15.5 14.9 14.9 14.5 13.6 13.6 15.1 14.8 14.7 14.4 0.8 0.8
HSE06-D3atm 15.7 14.9 15.2 14.4 13.3 13.3 15.4 14.9 14.6 14.4 0.9 0.9

Low-cost
B3LYP/6-31G∗ 21.1 20.2 20.5 19.7 18.1 18.1 20.5 18.3 19.9 19.6 6.0 6.0
HF-3catm 16.0 15.3 15.3 14.6 14.2 14.2 15.6 15.2 14.8 14.6 1.3 1.3
DFTB3-D3atm 13.4 14.4 14.9 14.7 16.7 16.7 14.4 14.7 14.5 14.9 1.3 1.5

aEnergies, mean deviations (MDs) and mean absolute deviations (MADs), are given in kcal/mol.
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FIG. 5. Deviation of selected methods from the reference lattice energy. Histograms are given with 1 kcal/mol bin width. Error distributions of all functionals
are given in the supplementary material.48

within 3%. The missing three- and four-center integrals and
corresponding empirical pair potentials in the method are
especially important for short distances, which explains the
bad performance of the tight-binding model for the various
high density phases.

Because the unit cell volume as a quality measure could
hide systematic error compensations between the different
cell dimensions, we additionally investigate the individual
cell parameters. The cell data and statistics are given in the
supplementary material.48 The deviations from the references
are distributed very uniformly in all directions. The MARDs
of the unit cell lengths are approximately 1/3 (to 1/2) of the
corresponding unit cell volume MARDs and the ranking of
the various methods persists.

TABLE V. Statistical data of the best DFT-D3 methods with other dispersion
inclusive DFT methods for the ICE10 lattice energies.

MD MAD RMSa

revPBE-D3atm 0.18 0.52 0.65
PBE0-D3atm 0.85 0.85 1.00
PBE + TSb 1.92 1.92 0.66
PBE0 + TSb 1.16 1.16 1.24
PBE0 +MBDb 1.02 1.02 1.12
optPBE-vdWb 1.36 1.36 1.36
RPA@PBEc 1.63 1.63 1.63

aMD, MAD, and root-mean-square deviation (RMS) are given in kcal/mol.
bValues take from Ref. 16. Note that only four data points are available.
cValues take from Ref. 17. Note that only four data points are available.

C. Electronic lattice energy

We have shown in the last paragraph that London dis-
persion forces are crucial to get correct cell volumes. The
three-body dispersion effects are small but on average improve
the results. BLYP-D3atm is the best performing method
concerning the structures. However, if one aims at screening
of very many structures (polymorphs), the electronic lattice
energy is the most important property.

In Table IV, we give the lattice energies of all systems
together with the mean deviation (MD) and mean absolute
deviation (MAD) in kcal/mol. The statistical data correspond
to the seven systems with experimental references. In addition
to the previously studied (meta-)GGAs, we show values for the
meta-GGA M06L and the hybrid functionals PBE0, B3LYP,
and HSE06, which are evaluated at the PBE-D3 geometries.
The statistics of selected methods are shown in Figure 5.

Analysis of the energy data supports the trends already
observed. Plain PBE is surprisingly good due to error
cancellation between the overestimated hydrogen bond energy
and missing long-range dispersion. The other plain functionals
fail to describe the systems properly. M06L includes to some
extend short-range dispersion effects but has an unsatisfactory
MAD of 1.6 kcal/mol with a systematic underbinding
tendency. Apparently, the correct long range behavior is
important in ice. If these contributions are included by
the D3(0) scheme, the MAD diminishes to 1.3 kcal/mol
and the MD is close to zero. Apart from PBE (which
has the intrinsic hydrogen bond errors), all functionals are
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FIG. 6. Performance of various meth-
ods for interaction energies of wa-
ter in the gas and solid state evalu-
ated as MARD on the benchmark sets
WATER14 and ICE10.

significantly improved by the dispersion correction. Both
revised PBE versions have an exceptionally small MAD of
about 0.5 kcal/mol. The effect of the three body dispersion is
small, but again its inclusion improves overall the results. The
best performing GGA is revPBE-D3atm. It has a tiny MAD
of 0.5 kcal/mol, which corresponds to a MARD of 3.8%.
BLYP-D3atm also performs well with a MAD of 1 kcal/mol
(MARD of 6.9%).

Inclusion of non-local exchange is rather costly in
converged basis sets. However, all hybrid functionals
have consistently smaller errors compared to their GGA
counterparts with MADs usually below 1 kcal/mol. For
instance, PBE0-D3atm has a MAD of only 0.8 kcal/mol with
MARD of 6.1% which is significantly better than PBE-D3. We
use the PBE0-D3atm lattice energies for systems 8-10 shifted by
the negative MD on systems 1-7 as best theoretical estimates
for these systems where experimental data are lacking. These
values should be robust enough to benchmark less accurate
small basis DFT, semiempirical, and classical force fields.

The low-cost methods have a larger error spread. Plain
B3LYP/6-31G∗ has a large error of 6 kcal/mol and cannot be
recommended. Both HF-3catm and DFTB3-D3atm are rather
good with MADs only slightly above the DFT-D methods
(MARD of 9.4% and 11.2%, respectively).

Other dispersion inclusive DFT methods perform very
similar, Table V. The TS method4 is constructed similarly
to D3 (use of pre-calculated C6 coefficients) and can also
be applied as a correction to standard density functionals.
PBE + TS results in similarly overbound crystals. In
combination with PBE0, it is slightly worse compared to
PBE0-D3atm. The corresponding many-body dispersion has a
similar magnitude as the three-body ATM term and leads to
minor improvements; the MAD of PBE0 + MBD is close to
1 kcal/mol. The van der Waals density functional optPBE-
vdW includes a non-local kernel combined with an adjusted
semi-local DF part. The performance on the ice systems is
reasonable, but worse than the DFT-D methods. Also the
explicitly correlated RPA method evaluated on PBE orbitals
performs worse than DFT-D. This could be significantly
improved by replacing PBE with its hybrid variant (including
25%–50% HF exchange) as already recognized by Kresse and
coworkers.17

D. Comparison to gas phase water clusters

In order to put the above results into a broader perspective,
we compare our results to the neutral systems of the
WATER27 set compiled by Goddard, dubbed WATER14 in
the following.56 It consists of water oligomers with up to
20 molecules. The reference energies are at the estimated
CCSD(T)/CBS level of theory, while for the largest clusters
(20H2O), MP2 values are used. Recently, new reference
energies at the incremental CCSD(T) level with tighter basis
set convergence have been published.57 Especially for the
neutral systems, the deviations are small and we decided to
use the original references. In Figure 6, we show the MARDs
on both benchmark sets for a selection of methods. The typical
functional behaviors are consistently found for both sets. The
artificially overly attractive PBE functional leads to the bad
performance of PBE-D3atm in both phases. The revised version
revPBE-D3atm performs significantly better. BLYP-D3atm is
the best performing GGA on the WATER14 set and similar
good results are obtained for the solid state with an MARD
below 7%. Similarly, both meta-GGAs perform consistently
well. Note that for good results with M06L, the correct
long-range dispersion contribution by the D3(0) treatment is
important. The two hybrid functionals have MARDs between
5% and 7% for both sets. Especially for the gas phase clusters,
the low-cost methods show more scatter. HF-3c has a rather
large error of 14%, while DFTB3-D3 has a very low error
of 5%. These differences are not observed for the ICE10 set
where HF-3c and DFTB3-D3 both have a reasonable MARD
around 10%, respectively. Despite some differences, a similar
performance of the tested methods for both the gas and the
solid state is noted. If the DFTB3-D3 value is excluded, the
linear correlation coefficient between the gas/solid MARDs
of the shown methods is 0.73.

IV. CONCLUSION

We presented a set of ten ice polymorphs ranging from low
density (0.9 g/cm3) to high density (1.5 g/cm3) phases. The
X-ray structural data were back-corrected for zero-point and
thermal effects at the HF-3c level in order to get equilibrium
structures on the electronic energy surface for convenient
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benchmarking. The experimental sublimation energies for
seven systems have been extrapolated to 0 K lattice energies by
Whalley.21 On these “experimental” equilibrium geometries
and electronic lattice energies, several dispersion inclusive
density functional approximations as well as some selected
low-cost MO methods were benchmarked.

An accurate treatment of non-local London dispersion
interaction is shown to be mandatory for an accurate
description of both the structures and energies. All dispersion
corrected GGA functionals yield very reasonable structures
with MARD from the reference unit cell volume of
approximately 2%–3%. The corresponding lattice energies
are accurate and close to or below the “chemical accuracy”
of 1 kcal/mol. Especially, BLYP-D3atm performs excellently
with MARD of the unit cell volumes and MAD of the lattice
energy below 1% and 1 kcal/mol, respectively. Compared to
corresponding GGAs, the hybrid density functionals improve
the lattice energies slightly and can be recommended for
obtaining best (routinely) possible energies. While dispersion
uncorrected PBE provides reasonable (but not very good)
results, the overall picture is more consistent with other
(inherently more repulsive) dispersion corrected GGAs. From
the investigated low-cost methods, we recommend HF-3c for
geometry optimization including frequency calculations. This
conclusion is in agreement with the good performance of HF-
3c for noncovalently bound organic complexes and solids.7 For
an analysis of the individual non-covalent interaction terms
and their compensations in dispersion-corrected minimal basis
set HF calculations, see Ref. 42. The structures of the tight-
binding model DFTB3-D3 have to be taken with care. The
lattice energies at this level are rather good, especially when
considering the tremendous speed up of approximately 2-3
orders of magnitude compared to full DFT calculations.

In summary, we have shown a hierarchy of methods which
is ideally suited to describe ice at various densities. Some
comparisons with water clusters furthermore indicate that the
conclusions are transferable to the liquid state where detailed
benchmarking studies are hampered by the sampling problem.
With the best performing theoretical models, also, e.g., large
solid water interfaces should be described quantitatively.
Especially, the cheaper methods can be used in molecular
dynamic simulations, where full DFT calculations are often
prohibitive in terms of computational cost.
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