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ABSTRACT: Mean-field electronic structure methods like Hartree−Fock, semilocal
density functional approximations, or semiempirical molecular orbital (MO) theories do
not account for long-range electron correlation (London dispersion interaction).
Inclusion of these effects is mandatory for realistic calculations on large or condensed
chemical systems and for various intramolecular phenomena (thermochemistry). This
Review describes the recent developments (including some historical aspects) of
dispersion corrections with an emphasis on methods that can be employed routinely
with reasonable accuracy in large-scale applications. The most prominent correction
schemes are classified into three groups: (i) nonlocal, density-based functionals, (ii)
semiclassical C6-based, and (iii) one-electron effective potentials. The properties as well
as pros and cons of these methods are critically discussed, and typical examples and
benchmarks on molecular complexes and crystals are provided. Although there are some areas for further improvement
(robustness, many-body and short-range effects), the situation regarding the overall accuracy is clear. Various approaches yield
long-range dispersion energies with a typical relative error of 5%. For many chemical problems, this accuracy is higher compared
to that of the underlying mean-field method (i.e., a typical semilocal (hybrid) functional like B3LYP).
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1. INTRODUCTION
Mean-field (MF) electronic structure methods like Hartree−
Fock (HF), approximate, semilocal Kohn−Sham density
functional theory (KS-DFT), and semiempirical molecular
orbital (SE-MO) theory are widely used in chemistry and
physics, particularly for large systems. These methods do not
describe long-range electronic correlation effects, and hence they
cannot account for so-called London dispersion interactions.1−5

The development of appropriate dispersion corrections to cure
this deficiency is a very active and practically relevant field of
theoretical research. The increased attention to this topic in the
past few years is directly reflected in the growing number of
citations found in the field of dispersion correction or van derWaals
+ density functional theory (see Figure 1). This Review shall report
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on dispersion corrections for MF approaches that have been
developed and applied in the last few years. For related works
with some review character, see refs 7−16.
Dispersion interactions can be empirically defined as the

attractive part of a van der Waals (vdW)-type interaction
potential between atoms or molecules that are not directly
(covalent or ionic) bonded to each other. They are prominently
mentioned in the very first quantum chemistry textbook by
Hellmann.17 In the current literature, the terms “dispersion” and
“vdW” are often used synonymously. The attribute dispersive
should be avoided in this context because it has various other
meanings in science. According to a more precise definition,
London dispersion interactions result from relatively long-
ranged electron correlation effects in any many-electron system
that neither requires “polarity” nor wave function (WF) overlap
(see section 5 for a discussion on the distance regime relevant for
London dispersion). They involve coupled local components
and can be explained in a stationary, time-independent electronic
state picture. Already in 1930,1 from the simplest perturbation
theory Eisenschitz and London have derived the famous
asymptotic formula for the dispersion energy between two
atoms A and B at large distance R
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where α0 is the static dipole polarizability and I is the atomic
ionization potential. The atomic constants can be condensed to
the pair-specific C6 dispersion coefficient, which determines the
strength of the interaction. Note that Edisp is attractive for any
distance and hence stabilizes molecules with respect to their
constituting atoms, condensed phases over the (diluted) gas
phase, and in general more dense structures and materials. The
well-established London formula represents a central element in
the correction schemes discussed herein. Quantum chemical
methods to compute the C6 and higher-order dispersion
coefficients are briefly discussed in section 4. Note that there is
no consensus in the literature if the sign in the above equation
should be stated explicitly (and hence the C6 would be positive)
or if it is included in the coefficients. In any case, the long-range
dispersion energy as an electron correlation effect is always an
energy-lowering (negative) quantity. In this Review, we adopt
the former variant, i.e., with C6 being a positive quantity.

It has now become very clear, especially for the chemistry and
physics of large or condensed-phase systems, e.g., in bio- or
nanoarchitectures, that inclusion of these interactions in
theoretical simulations is indispensable in order to reach
chemical accuracy (∼1 kcal/mol). Classical, atomistic force-
fields have treated these interactions from the very beginning, for
example, by interatomic Lennard-Jones type 6−12 potentials.
For a recent overview on various calculation methods for large
systems, see ref 18. Because dispersion effects are due to
ubiquitous electron correlation, they also influence the accuracy
of theoretical (reaction) thermodynamics.19 See ref 20 for a
recent review on dispersion effects from a chemical/catalysis
point of view. They are, of course, most important when aiming
at a good description of intermolecular, noncovalent interactions
(NCIs), and this is also historically the origin of the field.
However, here we will pursue a more general picture of
dispersion effects as outlined in the next section and illustrated
with examples in section 5.
If perturbation theory is applied to the electrons of interacting

atoms,4,21 two distance regimes can be identified (Figure 2). At

large distances, the dispersion energy is given by the well-known
−1/R6 dependence on the interaction distance. Note that the C6
dispersion coefficient can refer to atoms as well as entire systems
(molecules) because it is derived from a centered multipole
expansion. In this long-distance region, London dispersion can
be considered as the attractive part of a typical Lennard-Jones
(model) potential. According to a less well-known analysis,21 at
small distances, the dispersion energy becomes constant and part
of the normal correlation energy (as first used in a correction
scheme by Becke and Johnson22). The currently established
notion is that the dispersion energy is a continuous quantity
representing a meaningful concept for all values of R (i.e.,
including the dashed line in Figure 2). It can be expected that in
intermediate regions it influences the electronic energy of
molecules significantly and hence has to be considered in
computational thermochemistry. Note that it is defined not only
for the intermolecular/interatomic situation but also for the
interaction of intramolecular fragments (functional groups)

Figure 1.Number of citations found on the Web of Science6 in the time
period from 2000 through 2015 for papers on “dispersion correction” or
“density functional theory” + “van der Waals”.

Figure 2. Qualitative behavior of the correlation energy at short
distances R (unified atom limit) and asymptotically for large distances,
where it is termed interatomic (molecular) London dispersion energy
(k1, k2, and C6 are system-specific constants). The dashed line depicts
the interpolation that is used in many correction methods and indicates
the medium-range correlation/dispersion range of ∼2.5−3.5 Å.
Reprinted with permission from ref 14. Copyright 2014 Wiley-VCH.
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because of the locality of electronic structure for most chemical
systems (i.e., large gap systems with a sparse one-particle density
matrix).23 This leads to the concept of intramolecular dispersion
energy. A more concrete chemical example for the different
correlation length scales is given in section 5, for a discussion of
dispersion effects on molecular structure where the short-range
part is also relevant; see ref 24.
The scope of this Review is methods that introduce dispersion

interactions into MF methods (see Figure 3), their historical

development, and their physical/theoretical context. The
currently more widely used, practical, and robust approaches
are in the focus here. Dispersion corrections are nowadays mostly
applied in the framework of KS-DFT. For a more general
discussion about status, accuracy, and further problems of KS-
DFT in chemistry, see refs 25−28. Although KS-DFT is, in
principle, an exact theory that of course includes dispersion
(electron correlation), in its current approximate state it behaves
more like Hartree−Fock in this respect. We use the term “DFT”
synonymously for approximate KS-DFT in this work as it is
common in the current literature. Because KS-DFT is a single-
determinant, orbital-based scheme, it is considered here as a MF
method even though a considerable amount of electron
correlation effects are covered. DFT-related virtual orbital-
dependent methods such as the random phase approximation
(RPA)29 or fragment-based methods like symmetry-adapted
(intermolecular) perturbation theory DFT-SAPT30,31 (see ref 32
for a related approach) are, however, only mentioned shortly in
section 2 but are mostly excluded from the discussion. They
either are not completely general (not applicable to the
intramolecular case), are still at some kind of preliminary
development stage (e.g., no analytical gradients are available), or
are currently not applicable to very large systems (roughly
defined by >1000 atoms to which MF methods are applicable).
The applicability to very large systems is actually one of the key
advantages of MF approaches: the scaling behavior of the
computation time with the system size is much better (formally

N( )4 , practically N( )2 to N( )3 , where N is the number of
electrons) compared to correlated WF theory (WFT) methods.
Furthermore, MF approaches converge significantly faster to the
complete basis set (CBS) limit,33 and basis set superposition and
incompleteness errors are generally smaller. This allows for
calculations already close to the CBS limit with polarized
quadruple-ζ (QZ) basis sets or allows one to employ smaller
basis sets in combination, e.g., with empirical basis set
superposition error (BSSE) absorbing potentials (atom pair-
wise34 as well as effective core potentials (ECP)35 are available).
Remarkable steps toward (near) linear scaling variants of
correlated WF methods have been taken in recent

years;23,36−39 however, their slow convergence to the CBS
limit still persists. The correlated WFmethod with lowest scaling
(formally N( )5 ) is second-order Møller−Plesset perturbation
theory (MP2).40 A modified variant (scaled opposite-spin
MP2)41 exists that scales with N( )4 . Even at the CBS limit,
however, MP2 performs badly for dispersion-dominated
interactions,42−44 in particular for chemically unsaturated
systems. The reason for this is that the dispersion energy
contribution to the supermolecular MP2 energy lacks intra-
molecular correlation effects and therefore describes the long-
range correlation energy on the so-called uncoupled level (see
below). For association reactions of two separate species (eq 9),
this situation could be remedied by replacing theMP2 dispersion
contribution with coupling-inclusive terms from time-dependent
HF42 or time-dependent DFT (the latter yielding the MP2C
approach45). These methods unfortunately require the definition
of separate fragments and are consequently not generally
applicable. To arrive at a generally applicable MP2-based
approach, range separation of the correlation energy into
short- and long-range parts is possible (similar to Figure 2).46

Another workable approach is to introduce different scalings of
the same-spin and opposite-spin components in MP247

including further developed variants thereof.48 Recently, MP2
correlation at short range has been combined with a dispersion
correction originally developed for MF approaches, which then
describes the correlation at long range.49,50 Such methods are
beyond the focus of this Review. However, one should be aware
of the fact that, for an accurate description of dispersion
interactions, cost-efficient correlated WF methods require
modifications at long range as well, notwithstanding the
mentioned slower convergence to the CBS limit. Consequently,
in the foreseeable future, MF approaches (in particular
sophisticated DFT methods) will be the only reasonable choice
to routinely conduct gradient calculations on large systems with
>100 atoms.
According to Figure 3, the corrections considered herein can

be classified into three groups: nonlocal density-based (which
mostly include a correction to the electronic potential V),
semiclassical (C6-based) schemes (which often apply corrections
only to the total energy E), and effective one-electron potentials.
Almost all of the current dispersion corrections include empirical
elements in various ways. Hence, solid benchmarking on reliable
experimental or high-level theoretical reference data is
mandatory. For the inter- and intramolecular interactions and
mostly main-group thermochemistry considered here, the
current gold standard in quantum chemistry is the WF-based
singles and doubles coupled-cluster method with perturbative
triples (CCSD(T)), which yields accurate results of benchmark
quality (<1 kcal/mol error for typical chemical reactions or <1%
relative error, respectively, for molecules of up to ∼50 atoms
whose electronic structure is dominated by a single Slater
determinant in the wave function).51,52 The use of theoretical
benchmark values has the advantage that dynamic, thermal, and
solvation effects are excluded, and direct comparisons for the
same fixed (or equilibrium, respectively) structure are made.
Therefore, this is the preferred approach pursued here.
The Review is organized as follows: the next section provides

basic information about the theory and properties of the
considered MF methods and their behavior in the field of
noncovalent interactions. Section 3 gives a historical overview
about the development of dispersion corrections spanning ∼30
years from the 1970s to the early 2000s. Section 4 provides a

Figure 3.Overview about dispersion-correction strategies to mean-field
quantum chemical methods.
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comprehensive picture of all types of modern dispersion
corrections including recent uncorrected density functionals.
This part emphasizes recommended methods for typical
applications. We furthermore make some remarks on treatments
for periodic (solid) systems, although our overall focus is clearly
on molecules. In section 5 we will illustrate the achievable
accuracy for intermolecular interactions in small- to large-sized
complexes, intramolecular dispersion effects on conformational
energies, and some prototypical chemical reaction energies.

2. SETTING THE STAGE
As already mentioned, this Review considers only a selection of
important and widely used quantum chemical methods. They
have in common that they are based on a single-determinant
wave functionΨ composed of single-particle functions (orbitals)
φi (electron spin indices are neglected in the following). In the
case of KS-DFT, this object has some auxiliary character and is
called Kohn−Sham (KS) determinant, while in WF theory it is
termed Slater determinant. The unknown orbitals are obtained
by solving

∫∑ ρ
ρ φ

φ φ
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| − |
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with the kinetic energy operator, nuclear-electron interaction and
Coulomb (Hartree), and exchange-correlation (XC) potentials.
Semiempirical (also called tight-binding) molecular orbital (SE-
MO) theories discussed herein employ, instead of the formally
exact effective one-electron Kohn−Sham operator h ̂KS, an
appropriately modified semiempirical approximation h ̂SE,
although they basically solve the same one-particle equation
(eq 2). The SE-MO approaches typically apply drastic
simplifications in the linear combination of atomic orbitals
(LCAO) expansion of the orbitals φ (minimal AO basis set) and
electronic potentials appearing in h ̂SE. From here on we will
denote electron coordinates by small r while interatomic or
interfragment distances will be represented by capitalized R. If
not stated otherwise, atomic units are used throughout this
Review.
The crucial term in KS-DFT is the XC potential given as the

functional derivative of the exchange-correlation energy

ρ δ ρ δρ=V E[ ] [ ]/XC XC (3)

with respect to the electron density ρ. Various approximations
for EXC have been proposed over the years; see ref 28 for a recent
review. In the case of HF, the electron-correlation part is missing
and the exchange term is given by the nonlocal exchange-
operator K̂ (termed Fock exchange here)

∫φ
φ φ

φ̂ =
| − |

K r r r
r r
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Hybrid functionals (global hybrids like B3LYP,53,54 local
hybrids,55,56 or range-separated hybrids57) mix in various ways
semilocal density functional (DF) approximations with nonlocal
Fock exchange. The most common way is the global approach
introduced by Becke,58

= − + +E a E a E E(1 )x X x X CXC
GGA Fock GGA

(5)

where ax is an empirical mixing parameter with 0 < ax < 1, EX
GGA

represents a semilocal DF approximation, and EX
Fock is the Fock

exchange energy obtained by applying K̂ to the KS (but not HF)
orbitals. If the correlation part is neglected (which is a reasonable
first approximation because the exchange energy is an order of
magnitude larger than the correlation energy on an absolute
scale), eq 5 allows one to linearly interpolate between HF and
KS-DFT. Numerical calculations indeed show that many
molecular properties as well as electronic and geometric
structures often depend linearly on the amount of nonlocal
Fock exchange mixing.59

All methods mentioned above (HF, KS-DFT, SE-MO) have in
common that a set of N one-particle functions (or N/2 in the
restricted closed-shell case) for the considered N electrons are
optimized and that the total energy depends exclusively on the
so-called occupied orbitals. The functions that are left over in the
variational optimization are usually called virtual orbitals. They
contain information about excitation energies and the response
of the system with respect to external (electromagnetic in our
case) perturbations. This is exploited in WF theories of electron
correlation where virtual orbitals are used to construct an
improved WF by inclusion of excited determinants.33 However,
neither virtual orbitals nor nonlocal density information is used
in any MF approach considered here, and hence long-range
London dispersion interactions are missing.
This failure is easily understood by considering the true wave

function based origin of the dispersion energy. For example, in
second-order Møller−Plesset (MP) perturbation theory (PT),40

the correlation energy is given by the Coulomb and exchange
interactions of single-electron transition densities centered on
interacting fragments A and B,

∑ ∑= −
| | − |
ϵ + ϵ − ϵ − ϵ

E
ia jb ia jb ib ja( )[( ) ( )]AB

ia jb a b i j
corr

(6)

where the sum is over all possible single particle-hole excitations
between orbitals i→ a (localized on A) and j→ b (on B), (ia|jb)
is a two-electron integral, and ϵ are the corresponding orbital
energies. The superscript AB denotes a second-order or two-
body treatment, which provides only pairwise additive dispersion
energies (see below). This is also illustrated schematically in
Figure 4. Note that A and B do not necessarily refer to clearly
separated atoms or molecules but can also be molecular
fragments leading to intramolecular dispersion effects. The
induced dipole moment on one of the fragments has its origin in
charge fluctuations on the other, but this simultaneous process is
better viewed as instantaneous electron correlation. In a more
precise picture, electromagnetic zero-point energy fluctuations in
the vacuum lead to virtual excitations to atomic or molecular
electronic states. The corresponding transition densities interact
electrostatically with exchange-type modifications at smaller
distances. They are not represented by HF or conventional
(hybrid) functionals that only consider electron exchange but do
not employ virtual orbitals (i.e., use electronic charge and
occupied orbitals but no transition density). It is noted that
dispersion is transmitted by electromagnetic radiation at the
finite speed of light while the interacting electrons move. This
leads to small so-called retardation effects that appear for very
distant fragments.60 However, due to their insignificance in
molecular systems, these are not discussed further.
Dispersion interactions are most important for a quantitative

description and qualitative understanding of noncovalent
interactions (NCIs). To put the properties of the MF electronic
structure methods into a broader perspective, we briefly describe
the symmetry-adapted perturbation theory (SAPT30,31) picture
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of noncovalent interactions. Normally, MF methods employ a
supermolecular computation of the interaction energy ΔEAB,

Δ = − −E E AB E A E B( ) ( ) ( )AB (7)

where E(AB) and E(A)/E(B) refer to the complex and
noninteracting fragment total energies, respectively. This
approach is rather general but has the disadvantage that the
result can be contaminated by the basis set superposition error
(BSSE) and that no insight into the nature of the interaction is
obtained.61 On the other hand, SAPT applies PT starting with
unperturbed monomer WFs (HF or KS-DFT) and a double-
perturbation scheme in the monomer correlation and the
intermolecular interaction V̂,

̂ = ̂ + ̂ + ̂H F W V (8)

where F̂ is the (KS-)Fock operator and Ŵ is the MP perturbation
in the case of HF. Note that the standard Rayleigh−Schrödinger
PT cannot be applied at short distances because of non-negligible
exchange interactions, i.e., the (antisymmetrized) fragment
product states are not eigenstates of the zeroth order
Hamiltonian. These difficulties are well-documented in the

literature.1,62−67 Although ignoring the antisymmetry at short
range can lead to unphysical states that do not satisfy the Pauli
principle, one can carry out a nonstandard perturbation
treatment working with both the antisymmetric and unsym-
metric product functions.1 The above double perturbation on the
basis of MF models has been proposed and refined by several
groups.68−74

The result of SAPT are the components of the interaction
(denoted normally without Δ symbol) in various orders Ees

(1j),
EEXR
(1j) , Eind

(2j), and Edisp
(2j) with coupling terms EEXR−ind

(2j) , EEXR−disp
(2j) , and

Eind−disp
(3j) , where the indices denote the order in the corresponding

perturbation (j refers to the intramolecular perturbation). This is
often condensed to the following working equation:

Δ = + + +E E E E EAB EXR es ind disp (9)

Here, “EXR” refers to the Pauli-exchange repulsion term, “es”
denotes the electrostatic interaction of unperturbed monomers,
“ind” indicates their induction (polarization) contribution, and
“disp” is the London dispersion energy. The last two terms are of
second-order type and hence involve the response of at least one
fragment. Note that similarly to the MP2 dispersion energy (eq
6), all orders in the SAPT expansion have a charge penetration as
well as an exchange counterpart. The corresponding exchange-
dispersion contribution is not explicitly treated by any of the
methods presented here, but it decays exponentially with the
fragment separation and the error is assumed to be small.
Detailed analysis of MF methods with this theory shows that HF
includes EEXR + Ees + Eind terms for uncorrelated monomers to
infinite order but completely lacks the second (and higher)-order
Edisp terms.75,76 A similar behavior can be expected for
approximate semilocal or hybrid DFT with the difference being
that the monomer description is partially “correlated” (mainly
affecting the Ees + Eind terms) and that the electron density decay
is slightly different (influencing mainly EEXR). Due to the
approximate character of currently used XC functionals,
particularly the short-range repulsive behavior (and its interplay
with the attractive components) is considerably different for HF
and various typical DFs. This is illustrated for the simple case of
two argon atoms in Figure 5a.
As can be seen from comparison to the reference CCSD(T)

curve (Figure 5a), all dispersion-devoid MF methods (HF,
B3LYP, and PBE) are over-repulsive and the energy ordering is
HF > B3LYP > PBE > CCSD(T). Dispersion corrections should
properly correct this behavior not only in the equilibrium and
large-distance regime (here >3.5 Å) but also for short interatomic

Figure 4. Schematic description of the dispersion interaction for two
interacting fragments A and B (e.g., helium atoms with a ground state
doubly occupied 1s orbital and virtual 2p3p4p··· orbitals) at large
distance. Transitions from the 1s orbital to the np orbitals lead to
nonvanishing transition dipoles if the transition densities are expressed
in a multipole expansion. Hence, this simplified picture is only valid in
the latter case. Excitations to nd orbitals would lead to higher-order
dipole−quadruple, quadrupole−quadrupole, etc. dispersion interac-
tions while s−ns transitions are electrically forbidden and do not appear
in the dispersion-energy expressions. Reprinted with permission from
ref 11. Copyright 2011 Wiley-VCH.

Figure 5. Computed (aug-cc-pV5Z AO basis) potential energy curves for (a) two interacting Ar atoms and (b) an Ar atom interacting with a positive
point charge.
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distances that occur in “real” systems, for example, in strained
molecular systems or under high-pressure conditions. In fact, HF
and B3LYP yield a completely unbound Ar2 complex contrary to
what is obtained at the reference level (Re = 3.78 Å with a De of
0.28 kcal/mol).
Part b of the figure shows the induction energies of the same

methods when an Ar atom is perturbed by a point charge. As a
stabilizing, second-order property, the induction energy Eind is
also considerably influenced by the monomer electronic
excitation energies. These are generally lower for DF than for
HF,77 which explains the observed order for Eind: HF >
CCSD(T) > B3LYP > PBE. Note the overestimated polar-
izability for both DFs, which in fact perform worse than HF.
However, the too low induction energy with approximate DFs
partially cancels the too repulsive EEXR part so that, at least for
polar systems, relatively good NCIs can result (if dispersion is
properly accounted for by additional corrections). This is in fact a
fundamental reason for the relatively accurate NCI energies
computed by dispersion-corrected DFT, which is documented in
more detail in section 5. The above picture is consistent with the
results of a recent study of three-body (nonadditive) effects on
NCIs in typical organic complexes.78

DFT-SAPT is an ideal tool for distinguishing the different
types of interactions contributing to the noncovalent binding.
Another related approach that allows for a similar decomposition
is the effective fragment potential (EFP) method.79 In Figure 6,

we exemplify this decomposition for DFT-SAPT on the π-
stacked uracil dimer for which the corresponding first-order
exchange repulsion EEXR and electrostatic Ees and the second-
order induction Eind and dispersion Edisp interactions are shown.
As usual, the exchange repulsion is the largest (and often the
only) repulsive contribution. The electrostatic and dispersion
terms are of similar magnitude. Apparently, the London
dispersion is a very important interaction in this system, and its
accurate description is mandatory for accurate quantum chemical
predictions.
The dispersion energy (like the other NCI energy components

in eq 9) has many-body nonadditive components that are not
covered by the purely atomic or molecular pairwise treatments as
in eq 1. This means, in the simplest example, that an atomic or

molecular trimer ABC does not have the interaction energy as
given by the sum of the three dimer energies AB, AC, and BC. We
give a summary of this topic following the clear and
comprehensive description by Dobson.80 In his work he
introduced three types of dispersion nonadditivity, defined in
general as the departure of the dispersion interaction from a sum
of gas-phase based Cn terms between pairs of previously selected
“centers” (usually atoms). These categories are termed type-A,
type-B, and type-C nonadditivity, respectively.
The type-A case refers to the change of the pairwise dispersion

coefficient for the free atoms Cn
AB when they are bound in a

molecule to other atoms. This change (typically a decrease) in
the corresponding “atom-in-molecule” dispersion coefficient is
caused by bonding (increase in atomic excitation energies);
crowding of orbitals, which effectively causes a reduction of
atomic volume, and, consequently, the atomic polarizability (see
ref 14 for a numerical overview for almost all atoms in the
periodic table). This type-A category was ignored in all early
dispersion-correction schemes (see section 3) and was often
dealt with semiempirically, for example, by choosing the optimal
coefficients through minimization of the error of the pairwise
calculation relative to accurate molecular-binding energies of a
dispersion-bonded training set.81,82 All modern pairwise
corrections like the XDM model,22,83,84 the D3 scheme,85 or
Tkatchenko and Scheffler’s (TS) approach86 include type-A
effects by making the coefficients dependent on atom-in-
molecule multipole moments (XDM), geometric coordination
number (D3), or an atomic volume (TS), respectively.
In contrast to the type-A case, type-B effects are nonadditive in

a strict sense. They occur because an additional polarizable
center C can effectively screen the Coulomb interaction between
a given pair of centers AB, thus altering their pairwise correlation
energy and the total dispersion energy of the trimeric system.
The lowest-order triple-dipole term leads, in the isotropic case, to
a three-center angularly and RAB

−3RAC
−3RBC

−3 dependent
interaction energy often dubbed the Axilrod−Teller−Muto
interaction (see section 4.1 for more details). In a diagrammatic
representation, an infinite number of further terms (ring
diagrams) like this arise from multiple response function
insertions into all possible Coulomb interaction lines, leading
to N-center contributions. Note that the terminology in the
literature regarding nonadditivity is not fully consistent. Dobson
defines the type-B nonpairwise interaction as present between
more than two atomic centers, and this definition is adopted in
the many-body-dispersion (MBD) scheme of Tkatchenko and
co-workers.87 It could, however, also refer to the number of
Coulomb-lines, i.e., correlating electrons. In WF theory
description, type-B effects are not captured by pairwise theories
like MP2 or SAPT2 but require at least coupling of first-order
perturbedWF as inMP3, or to infinite order as in RPA or CCSD.
Nonlocal density-dependent dispersion corrections like vdW-
DF288 or VV1089 described in section 4.2 also do not account for
type-B effects. Semilocal density functional approximations
(DFAs) provide short-range many-body XC effects, but their
magnitude and even their sign strongly depend on the particular
functional. The general agreement with CCSD(T) reference data
for rare gas (RG) triatomics is found to be insufficient.90,91

Atom or fragment-based approaches assume an inherently
localized electronic structure, i.e., that electrons can be ascribed
to centers of fragments. On the contrary, type-C nonadditivity is
an intrinsically quantum phenomenon that occurs in cases of
(near) degeneracy and strong electronic delocalization. This
causes zero-energy denominators in perturbation theory and

Figure 6. Contributions to the binding of a π-stacked uracil dimer
calculated with DFT-SAPT via the asymptotically corrected AC-PBE0
functional. Here, the PBE0 potential is shifted to reproduce the correct
ionization potential of the uracil monomer. The first-order contributions
are the exchange repulsion EEXR and the electrostatic Ees; the second-
order induction Eind and dispersion Edisp include the mixed exchange
type contributions as well.
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favors large electronic response and electron density fluctuations.
Such situations occur in metals, and perhaps the most striking
consequence of type-C effects is the quite different and slower
spatial decay of the asymptotic interaction energy between
gapless objects separated by a distance D (e.g., E ∝ D−3 for
parallel graphene sheets92), which cannot be obtained by any
atom pairwise scheme. The nonlinear size-dependence of the
interaction energy of differently sized fullerenes, which have a
highly delocalized electronic structure, is also a consequence of
type-C dispersion effects. Note, however, that they are only really
significant for conjugated system of substantial size (e.g., a few
hundred carbon atoms) and that, for example, C60 containing
vdW complexes are relatively well (but not very accurately)93

described by pairwise approaches.95 The nonadditivity of vdW
interactions in nanostructures has been analyzed by models that
recover the exact zero- and high-frequency limits. The resulting
size dependencies of the nonadditive contributions can both
increase and decrease the interaction depending on the
system.96,97

In Figure 7, we sketch the long-range perturbation theory of
intermolecular interactions as used in all modern London

dispersion approximations. For a system of interacting fragments
(A, B, C, ...) with nonoverlapping electron densities, these
approximations are (1) the interaction is decomposed into
additive multibody interactions, (2) the interaction is treated
perturbatively (London dispersion terms arising in second and
higher order), and (3) the perturbing Coulomb potential is
approximated by its multipole components. Due to the
orthogonality of the excited states with respect to the ground
state (the integral of the charge transition density is zero), the
leading order corresponds to a dipole−dipole second-order
perturbation of the two-fragment interaction.

3. OLDER DISPERSION CORRECTIONS

The fact that standard local density approximations (LDAs) and
generalized gradient approximations (GGAs) yield an incon-
sistent or even unbound description of small vdW complexes was
discovered by three groups in the mid-1990s.98−100 RG dimers
were suggested even earlier as difficult test cases for density
functional approximations,101 although in this work the DFT
failure was not that clearly documented. In 1996, Meijer and
Sprik102 presented the first clear analysis of the strong density
functional dependence of the problem (i.e., LDA vs GGA
functionals) for the “canonical” case of the benzene dimer and,
furthermore, made the connection to errors in computed solid-
phase properties like mass density or lattice energy. General
claims that semilocal functionals cannot describe long-range
correlation forces were occasionally made,102,103 but without
clear reference or theoretical explanation. Even in 2002 the
situation was not clear as indicated by the summary of van
Mourik and Gdanitz104 of DFT studies on RG dimers, which
identified over-repulsive as well as overbinding approximations
that were further found to be strongly dependent on the actual
system.
Those days also have been dominated by the simple and

actually incomplete picture that dispersion forces are only
relevant for the intermolecular situation, i.e., vdW complexes and
condensed phases. The modern notion that intramolecular
dispersion effects are especially important in large systems19 was
undeveloped, at least in the theoretical chemistry community.
Note, however, that such intramolecular effects were occasionally
mentioned in the experimental literature; see refs 105 and 106 for
very early notes.
Dispersion corrections to DFT and HF were scarcely applied

prior to the year 2000, and if so, mostly in various
nonstandardized ways. These precursors to more modern
approaches are reviewed in this section. A common feature of
the methods described herein is that they do not target a general
solution of the problem but present ad hoc solutions for a few
systems at most, or sometimes even for one specific vdW
complex only.
All methods reviewed here approximate the total molecular

energy as a sum of a quantum mechanical (QM) energy from a
mean-field approach EMF and a dispersion-energy contribution
Edisp.

= +E E Etot MF disp (10)

where MF (i.e., mean-field approach) stands for Hartree−Fock
(HF), a density functional approximation (DFA), or a SE-MO
method. The EMF can be obtained even in a very approximate,
nonself-consistent way. The dispersion coefficients (see below)
in these early methods were not varied (geometry or electronic
structure dependent) or computed specifically but were mostly
taken as fixed parameters with numerical values often obtained in
experiments. In the terminology of Dobson (see previous
section), type-A (as well as type-B and type-C) nonadditivity
effects were neglected.

3.1. Dispersion-corrected DFT

Cohen and Pack were likely the first who applied an atom
pairwise dispersion correction to a density functional type
interatomic potential.107 The authors used the so-called
Gordon−Kim (GK)108 model as an approximation to HF and
applied a dispersion correction of the form

Figure 7. Three main approximations used in the long-range
perturbation theory of interfragment interactions. This is the foundation
of all modern London dispersion corrections, which treat the expansions
to various orders. Here, the blue ν represents the noncategorized
perturbation, while the green ν′ and the red ν″ correspond to induction
(excitations only within one fragment) and dispersion (excitations
within both fragments) interactions, respectively. ρA is the electron
density on fragment A, qA is the monopole, μA the dipole, and θA is the
quadrupole term arising from the multipole expansion of the Coulomb
potential due to the electrons on A.
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= − − −E R
C
R

C
R

C
R

( )disp
6
6

8
8

10
10 (11)

where R denotes an interatomic distance. The GK method uses
the simple sum of atomic electron densities ρA and ρB to express
the total molecular density ρ = ρA + ρB for a diatomic AB and
employs various density functionals to compute electronic
Coulomb, exchange, and correlation energies nonself-consis-
tently. For the pair-dispersion coefficients Cn(A,B), general
combination rules of the form

∑= ′
ϵ ϵ ϵ + ϵ+C A B

f A f B

A B A B
( , )

( ) ( )

( ) ( )( ( ) ( ))n m

ml nl

m n m n
4 2

,

l

(12)

were proposed, where the ϵm = Em − E0 are atomic excitation
energies, the prime implies summation over all states of the
atoms except the ground (0) states, and the fml(A) are the 2

l-pole
oscillator strengths of the atoms. This GK + dispersion approach
was shown to give a reasonable estimate of the whole potential
curve for both like and unlike pairs of RG atoms. Simple but
seemingly reliable combinatorial rules were also proposed and
tested for the higher-order dispersion coefficients. An additional
exchange correction according to Rae109 (termed GKR method)
was found to improve the agreement with HF data. Because the
above dispersion energy was used in an undamped, thus wrong
short-range form, parts of the interatomic potential were not
considered and the entire work was focused on the long-range
interactions. As was common in all these early works, only
diatomic RG complexes were investigated.
In a series of papers published in the late 1990s,110−113 the

group of Gianturco applied a special version of dispersion-
corrected DFT to RG(He, Ne, Ar)−CO vdW complexes. The
treatment involved a so-called half-and-half density functional of
global hybrid type ( = +E E EX XCxc

1
2

Fock 1
2

LDA), a large standard

Gaussian AO basis set, and a dispersion term of the form as given
in eq 11. The dispersion coefficients were dependent on the
bending angle θ in the triatomic complex. Two approaches to
merge the DFT and dispersion parts were considered. The first
was multiplication of the dispersion potential by a damping
function of the Tang−Toennies (TT) type114

∑= − −
!=

f bR bR
bR
k

( ) 1 exp( )
( )n

k

n k

damp,TT
( )

0 (13)

where b is an empirical parameter and n defines the order of the
dispersion expansion (usually n = 6, 8). This is similar to the
treatment in the HFDmodel of Ahlrichs and Scoles (see below).
In modern notation this form of the damping function that
asymptotically approaches zero for R → 0 is called “zero-
damping” (see section 4 for further discussion). The second
approach was somewhat less empirical and involves the short-
andmedium-range (SMR) correlation energy estimated from the
difference of DFT and HF interatomic potentials, i.e.,

= −E R E R E R( ) ( ) ( )corr,SMR DFT HF (14)

which was then used to define a total correlation correction,

= +λE R D E R E R( ) ( ) ( )corr,tot corr,SMR disp (15)

where Dλ is a scaling parameter obtained by matching the two
regions at the points Rλ where the logarithmic derivatives of the
dispersion and correlation branches are equal. The final energy
was then given by

=
<

+ >
λ

λ
⎪

⎪⎧⎨
⎩

E
E R R R

E R E R R R

( )

( ) ( )tot
DFT

HF corr,tot (16)

The resulting two-dimensional potentials compared well with
the best known data from SAPT calculations, and derived
thermal transport properties of RG/CO mixtures were in good
agreement with corresponding measurements. Although the
method was quite successful, it has never been applied to more
complicated systems. Presumably, this is because the complexity
of the problemwhen aiming at very high accuracy is hidden in the
angle-dependent dispersion coefficients Cn(θ), which were taken
from literature data but not actually computed specifically for the
considered system.
The common, textbook-prevalent view that dispersion forces

are relatively unimportant for polar or hydrogen-bonded systems
(where electrostatic and induction terms dominate) while they
are decisive for, e.g., hydrocarbon or rare gas complexes was
questioned for the first time in the years 2001−2002. It is
attributed to the growing interest in accurate quantum chemistry
based biomolecular simulations for proteins and DNA fragments
at that time.115−117 In that time the groups of Yang, Elstner/
Hobza, and Scoles more or less independently published
dispersion-corrected DFT approaches (or tight-binding ver-
sions) aiming at a more general description of noncovalent
interactions in bio-organic systems.118−120 These works did not
add anything particularly new from the methodological stand-
point because they just applied a damped-dispersion schemewith
typical density functionals (nowadays known as DFT-D).
However, they marked a turning point in the rediscovery of
the problem in DFT and motivated all further more general and
widely used DFT-D schemes.
The work of Scoles et al.118 made the most general statements

regarding the applicability of DFT-D (although this modern
term was in fact not used). They tested various functionals and
applied it even to transition metal carbonyls. Standard atomic
dispersion coefficients, combinatorial rules, and special damping
functions were employed, and the use of a three-body dispersion
term was already mentioned in this work.
Wu and Yang120 considered organic systems and used atomic

hybridization state dependent (but not system-specific)
dispersion coefficients. Different combinatorial rules and damp-
ing functions as well as three typical GGA and one hybrid
(B3LYP) functional were tested for RG dimers, for DNA base
stacking situations, and even for the intramolecular case of
polyalanine conformations. The same basic approach was used
two years later by Zimmerli et al.121 to describe water−benzene
complexes with B3LYP.
The paper of Elstner et al.119 is probably the first where a

dispersion correction is employed in a modern semiempirical
context. They combined it with the self-consistent-charge,
density-functional tight-binding (SCC-DFTB) approach, which
represents a minimal-basis set, second-order approximation to a
GGA calculation.122 The form of the dispersion correction is very
similar to the one used byWu and Yang. DNA base complexes of
stacked and hydrogen-bonded type were investigated in this first
publication, and a very good agreement with corresponding MP2
results was reported.
3.2. Dispersion-corrected HF

Scoles and co-workers123 started from the pure dispersion
interaction in the H2

3Σu
+ two-electron system, which is known to

a high degree of accuracy, and compared it to the corresponding,
entirely repulsive HF potential. It is noted that triplet H2 (not
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He2) is actually the simplest chemical system showing clear
dispersion interactions. From this comparison the authors
derived the correction potential needed for the dispersion.
They obtained the following relation for the total energy of the
dispersion-corrected HF method (often termed HFD) as a
function of interatomic distance R,

= − + +

× − −⎜ ⎟

⎛
⎝⎜

⎞
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⎡
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⎛
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E R E
C
R

C
R

C
R

R R
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/ 1m

HFD HF
6
6

8
8

10
10

1.9

(17)

Here, the dispersion coefficients C6−C10 for hydrogen and the
RG gas atom pairs (to which the method was applied first) were
taken from the literature, and the exponential term represents a
short-range damping with appropriate atomic or pair-specific
radii Rm. The method was later used by the same group with a
modified damping term and medium-sized Gaussian AO basis
sets, and was even applied to H2−He mixtures.124 For such
polyatomic systems, a standard atom pairwise additive
approximation

∑=E E R( )
AB

ABdisp disp
(18)

was employed where the sum is over all unique atom pairs in the
system and Edisp(RAB) is the corresponding damped pairwise
dispersion energy. As noted before, this approach neglects
dispersion-energy nonadditivity (type-B effects).
An undamped HF + dispersion approach including terms up

toC10 was solely applied to the potential energy curve of the neon
dimer in 1973 by Conway and Murrell125 (which was one year
earlier than the HFD paper of Hepburn and Scoles). This work,
although being rather special by focusing on the exchange-
interaction energy and only mentioning the applied dispersion
correction in a small paragraph, is to the best of our knowledge
the very first HF + dispersion work.
The various HF-based methods mentioned could have easily

been extended and generalized to arbitrary polyatomic
molecules. In particular, this holds for HF compared to DFT
because the former was widely used in chemistry and various
computer codes were commonly available already in the 1970s
and 1980s. However, HFD methods have been used only
occasionally to compute small aggregates of aromatic molecules
in later decades.126−128 The good accuracy of HF with a general
(e.g., D3) dispersion correction for almost arbitrary noncovalent
interactions was mentioned for the first time by Grimme et al.129

The very reasonable performance of HF-D3 was later
documented by the same group for various complexes34,130

and was recently reconfirmed by Conrad and Gordon.131 These
authors furthermore coupled their so-called EFP dispersion
model to HF and DFT, leading to the HF-D(EFP) and DFT-
D(EFP) methods, which seem to perform similar to the
corresponding HF-D3 or DFT-D3methods on a limited number
of smaller test complexes.132 To some extent related to HFD is
the Hartree−Fock−Clementi−Corongiu method, which scales
the two-electron repulsion integrals to include correlation effects
and includes an additional long-range dispersion term.133 This
reference describes corresponding potential energy curves for
naphthalene−RG complexes.

4. MODERN DISPERSION CORRECTIONS

4.1. Semiclassical treatments of the dispersion interaction

In semiclassical treatments, the dispersion energy evaluated
between atom pairs is simply added to the electronic energy of
the mean-field approach (MF; e.g., DFT, HF, or SE-MO) as
shown in eq 10. The term “semiclassical” originates from the fact
that the dispersion interaction is evaluated as the ef fective classical
interaction between atoms (or molecules), commonly known as
London or vdW interaction, although it is intrinsically a purely
quantum mechanical interaction. The most widely used
semiclassical methods are the exchange-dipole moment
(XDM) method by Becke and Johnson,22,83,84 the Tkatch-
enko−Scheffler86 method, and the D3 approach85,129 (as well as
its precursor D2)81 by Grimme and co-workers. Extensions
accounting for many-body effects in different flavors have been
reported as well.85,87,134

Note that in the current literature some (but not all) of the
atom pairwise methods are denoted with the attribute
“empirical”, which is inappropriate. In fact, all dispersion-
correction schemes toMF quantum chemical methods described
in this Review except vdW-DF contain empirical elements and
fitting to external (theoretical or experimental) reference data.
The term empirical may suggest inaccuracy, but a simple
quality−empiricism relation does not exist here. Hence, the term
“empirical” is misleading and should be avoided in this context.
We recommend to replace it by a short attribute denoting the
basic physical/theoretical foundation of the applied correction
(e.g., semiclassical (or, more specifically, atom pairwise),
nonlocal density based, effective one-electron based, etc.).
All of the semiclassical approaches share more or less the same

theoretical foundation, which can be derived from perturbation
theory (PT). The approaches then differ in the truncations and
approximations introduced. We will briefly demonstrate this by
deriving the −C6/R

6 term from second-order perturbation
theory (PT2). The electron correlation energy up to second-
order in the perturbation after application of the Slater−Condon
rules is given by (cf. eq 6)

∑ ∑
ω ω

= −
| − |

+
E

ia jb ib ja[( ) ( )]

ij

n

ab

n

ai bj
corr
PT2

2occ virt

(19)

where ij/ab denote occupied/virtual orbitals, respectively. Here
and in all following summations, we sum over unique pairs,
triples, etc. without explicitly restricting the sum. We use the
Mulliken notation for two electron integrals, i .e. ,

∫ φ φ φ φ| = | − |ia jb r r r r r r( ) d d ( ) ( ) ( ) ( )i a j br r1 2 1 1
1

2 2
1 2

. ωai is the ex-

citation energy corresponding to an electronic excitation from
orbital i to a. At this order in the perturbation, two-body
correlation effects, leading to pairwise dispersion, are captured.
Many-body dispersion effects are obtained if the perturbation
series is extended to higher orders in the interelectronic
perturbation parameter. It should be mentioned that in the
uncoupled approximation the denominator reduces to the
respective orbital energy differences, resulting in the MP2
expression for the correlation energy (see eq 6).
When the orbitals i and a are localized on fragment A and

orbitals j and b are localized on fragment B (eq 19, compare
Figure 4), the second (exchange) term in the numerator (ib|ja)
will vanish faster (exponentially) in the asymptotic limit (R →
∞). The first term, however, decays slower, and after rearranging
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the sums, we can express the PT2 correlation energy in the
asymptotic limit as

∑ ∑
ω ω

= = −
|
+→∞ ∈ ∈

E E
ia jb

lim
( )

R

AB

i a A j b B ai bj
corr
PT2

disp
, ,

2

(20)

Thus, in the asymptotic regime, the PT2 correlation energy
reduces to the square of Coulomb interactions between the
transition densities ia and jb localized on each fragment A and B,
respectively. Describing the Coulomb potential in a multipole
expansion, the nonvanishing term of lowest order is the dipole−
dipole term
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Here, μ⃗ia is the electric transition dipole moment (i→ a) and eR⃗ is
a unit vector along the interfragment axis. For spherically
symmetric fragments A and Bwhich is true, e.g., for the free
atomsaveraging over all possible orientations of the transition
dipole moments onA and B leads to the following formula for the
dispersion energy
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As originally demonstrated by Mavroyannis and Stephen,135

the following integral identity can be introduced,

∫ω ω π

ω ω

ω ω ω ω
ω

+
=

+ +

∞1 2
[ ][ ]

d
ai bj

ai bj

ai bj0 2 2 2 2
(23)

which is used to factorize the energy denominator:
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Using the identity ωai
2 + ω2 = ωai

2 − (iω)2, we can express the
dispersion energy via the averaged, isotropic dynamical dipole−
dipole polarizability αA.B(iω) of the fragments A,B at imaginary
frequency ω:

∫
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α ω α ω ω= − = −
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6
6 (25)

Here, we have used the Casimir−Polder expression of the
dispersion coefficient60

∫π
α ω α ω ω=

∞
C i i

3
( ) ( ) dAB

A B6
0 (26)

The dispersion energy, which is intrinsically an electron-
correlation effect, is reduced to local dynamical properties of
the individual fragments. While the poles of the dynamical
polarizability arise at real excitation frequencies, the polarizability
at an imaginary frequency is a mathematically much simpler
object. It decays monotonically from the static value α(0) and
vanishes at high frequencies α(iω→∞). This is of high practical
relevance as it significantly reduces the required number of grid
points in the numerical frequency integration (in eq 26).
If higher multipoles are considered in eqs 19−21, similar

expressions for Edisp
(8) , Edisp

(10), etc. are obtained. The integer numbers
6, 8, and 10 denote the power by which the respective
interactions collected within C6

AB, C8
AB, and C10

AB decay with
increasing separation R (compare with eq 11). As demonstrated
above, the C6

AB contains all terms arising from dipole−dipole

interactions, C8
AB arises from dipole−quadrupole interactions,

and C10
AB arises from dipole−octupole as well as quadrupole−

quadrupole interactions. Due to its slower decay, the dipole−
dipole term is asymptotically dominating and most important in
the long-range regime. For nonspherically symmetric fragments,
the expression of the dispersion energy (eq 20) in a multipole
expansion also leads to a C7

AB dispersion coefficient (and higher
orders). The C7

AB arises from a Casimir−Polder integral (see eq
26) with the dipole−quadrupole polarizability on one fragment,
either A or B. Its contribution is typically small and an average of
the C7 contribution over all equal-weighted orientations is zero,
so that it can be omitted in atom−atom models or effectively
absorbed into the symmetric higher-order terms (see section
4.4).
If the Cn

AB for fragments A and B are known, the pairwise
dispersion energy can easily be calculated. As discussed in section
3, early approaches made use of Cn

AB coefficients that were
specifically obtained for the systems of interest (typically rare gas
atoms). In general, however, the Cn

AB coefficients are unknown
for arbitrary fragments, and particularly in the intramolecular
case, the definition of such fragments is nontrivial and may
become highly artificial. The most straightforward and natural
scheme is the fragmentation into atoms.136 Thereby, the
coefficient Cn

IJ for interaction between (molecular) fragments I
and J can be decomposed into a sum of atom pairwise terms as

∑ ∑=
∈ ∈

C Cn
IJ

A I B J
n
AB

(27)

This allows the formulation of methods that are in principle
applicable to any system (inter- as well as intramolecular) as long
as the atom pairwise dispersion coefficients are known. However,
the polarizabilities and consequently the dispersion coefficients
of atoms in a molecular environment differ from free-atom ones
(type-A effects). Therefore, the dependence of the atomic
dispersion coefficients on themolecular environment needs to be
taken into account in some way, for which various schemes are in
use (see below). Note that the above pairwise additivity
assumption is physically motivated by the approximate additivity
of polarizability, which has the dimension of volume. The
decomposition in eq 27 is valid as long as type-B and type-C
nonadditivity effects are not pronounced (see section 2). This is
true for most cases in organic or main group chemistry.
Nevertheless, it should be mentioned that, e.g., fullerene dimers
already exhibit C6 dispersion coefficients, which are larger in
magnitude than the plain sum of atom pairwise contribu-
tions.137,138

The expression for the dispersion energy (see eq 25 for Edisp
(6) ) is

only defined at long range and will lead to singularities when R
approaches zero. Consequently, it must be damped at short
interatomic distances to avoid artificial overbinding in typical
covalent-bonding regimes. The damped atom pairwise dis-
persion energy is given by

∑ ∑ ∑= = −
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E E
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disp
( )
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(28)

where fdamp
(n) denotes a typical damping function that normally

decays to zero for R→ 0. The different damping models will be
discussed separately for each dispersion-correction scheme.
Before we present these in some detail, we summarize the key

points of the semiclassical treatment of Edisp (compare with
Figure 7):
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(1) Within many-body perturbation theory, the order in the
perturbation defines the maximum order of fragments
considered in the dispersion energy (i.e., how many fragments
are at most involved): Edisp

AB
first arises at second order in PT, Edisp

ABC

appears first at third order, etc. However, it should be noted that
higher-order terms involving intrafragment coupling may
implicitly be contained within the pairwise, triplewise terms
(e.g., Ecorr

ABBA effects are included within Edisp
AB ) if the fragment

polarizability captures these couplings.
(2) Within each order in the perturbation, the truncation of

the multipole expansion of the Coulomb potential defines the
considered dispersion terms with different decay behaviors in R,
i.e., C6

AB, C8
AB, etc.

(3) The way in which the atom-in-molecules (or solid)
dispersion coefficients are obtained (e.g., incorporation of the
molecular environment, type-A effects) significantly affects their
accuracy.
(4) The shape of the damping function is important for a

balanced treatment of both the short/medium range correlation
(within the chosen MF) and the long-range dispersion.
The latter point requires an additional comment: Ideally, the

damping function seamlessly interpolates between the two
correlation regimes depicted in Figure 2. However, in reality its
contribution goes beyond that as it implicitly absorbs errors of
the MF approach in that region as well (e.g., in the description of
exchange dispersion). In principle, this is true for all dispersion
approaches where the dispersion energy is added to the MF
energy (see eq 10), i.e., for semiclassical (section 4.1) and
similarly for nonlocal density based (section 4.2) corrections. For
a dispersion-free functional specifically designed to avoid the
double-counting, see ref 139.
In the following, only workable, i.e., generally applicable,

semiclassical dispersion corrections are presented that have
found application in recent years. Therefore, approaches that
solely focus on the calculation of dispersion coefficients without
coupling them to a MF method will not be considered in the
following (some examples can be found in refs 140−145).
Although the multipole expansion is the most intuitive way to

describe the perturbing Coulomb field, it is ill-defined at short
distances, where it formally diverges. Note that the reduction of
the dispersion energy to local fragment properties does not
necessarily depend on this expansion. It may be expressed in a
more general form via the charge density susceptibility χ(r,r′,ω),
which describes the response of the charge density at r due to
perturbation at r′ with frequency ω,

∫

∫
π

ω

χ ω χ ω

= −

× ′ ′
′ ′

| − ′ − ′|

E

i i
r r r r

r r r r
r r r r

1
2

d

d d d d
( , , ) ( , , )

AB

a a b b
a a b b

a b a b

disp

(29)

where the integration over ra and rb is restricted to fragments A
and B, respectively. From this expression, one can build a bridge
to the nonlocal density functionals presented later in section 4.2
as they make local approximations to the charge-density
susceptibility χ(r,r′,ω) and thus recover the dispersion
interaction by a more complicated Casimir−Polder-type
expression.
4.1.1. D2 approach. The D2 method was presented by

Grimme in 200681 as a successor of the D1 approach from 2004,
which was limited regarding the covered chemical elements.146

Even though the D2 method (often abbreviated as “-D”) is not
considered to be state-of-the-art anymore, it is discussed here as

it still is widely in use147 and constitutes a comprehensible
starting point for developing other approaches. In D2, only the
two-body, dipole−dipole dispersion energy Edisp

(6) is evaluated

∑= −E s
C
R

f R( )D

AB

AB

disp
2

6
6

6 damp
Fermi

(30)

where s6 is a functional-specific scaling parameter. fdamp
Fermi(R) is a

Fermi-type damping function that reduces the dispersion energy
to zero at small interatomic separations120

=
+ −f R( )

1
1 e R s Rdamp

Fermi
20[ /( ) 1]R vdW (31)

where RvdW is the sum of the vdW radii of the two atoms and sR is
a scaling parameter. These are estimated from the electron
density obtained by restricted-open-shell HF calculations of the
free atoms. The C6

AB dispersion coefficients in eq 30 are obtained
as the geometric mean of the respective homoatomic value C6

AA

=C C CAB AA BB
6 6 6 (32)

The C6
AA coefficients are computed using the empirical

relationship

α=C NI0.05AA
A A6

0
(33)

The scaling factor N increases with the row in the periodic table
of elements. The static dipole polarizability αA

0 and first ionization
potentials IA are computed with the PBE0148−150 functional.
Because D2 does not use dispersion coefficients from the correct
Casimir−Polder expression (eq 26), it is regarded as a fully
empirical correction. The C6

AA are element-specific parameters
and are available for all elements up to xenon. They do not,
however, contain any dependence on the molecular environ-
ment, but instead the atomic dispersion coefficients are averaged
for different hybridization states of the atom. This “force-field”-
like character makes it computationally very efficient. Only the
geometry of a molecule is required, and the dispersion energy as
well as its gradients are easily calculated. However, for example,
the C6

AA for carbons in ethene and ethane are identical, which
limits the accuracy of the method.
Originally, the method was proposed together with a

reparametrized, nonhybrid variant of the B97151 functional
(called B97-D).81 It represents the first DFA that has been
specifically designed to include a dispersion correction from the
very beginning. This mostly avoids electron correlation double-
counting effects, which sometimes appear with standard DFAs
(which already describe correlation effects) when they are
augmented with dispersion models that additionally describe
correlation.
As such, the method is still applied. Neglecting the higher-

order atom pairwise dispersion coefficients (Cn
AB, n ≥ 8) works

quite well in B97-D because the flexible B97 functional implicitly
captures these effects to some extent. The good interplay
between D2 and B97 has also been exploited by Chai and Head-
Gordon in the development of the range-separated hybrid
functional ωB97X-D.147

The D2 method represents one of the first semiclassical
approaches available for a large part of the periodic table.
However, its major deficiency is the missing dependence of the
dispersion energy on the molecular environment. Nevertheless,
being one of the first dispersion methods that was widely
available for (almost) arbitrary systems, this method became
extremely popular, with the original paper81 being cited more
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than 5000 times.6 D2 has been combined with several MFs like
semiempirical methods152−156 and density functionals.157,158

Furthermore, it has been included as an integral component into
some newly developed density functionals.147,159 Because of its
very simple and manually tunable character, D2 can easily be
modified and special variants have been presented.160 In
combination with the B3LYP functional,53,54,58,161,162 Civalleri
et al. proposed the B3LYP-D* scheme in which the scaling factor
s6 is set equal to 1 (originally 1.05)

81 and by rescaling RvdW in the
damping function (eq 31).163 This modification improved the
performance for structures and cohesive energies of molecular
crystals. Steinmann, Csonka, and Corminboeuf164 have
presented a variant (known as “dD10” in the literature) that
employs the TT damping function and includes higher-order
multipole terms (i.e., C8

AB and C10
AB) via recursion relations. A

recent approach related to D2, i.e., use of fixed dispersion
coefficients, is the spherical atommodel by Austin et al.,165 which
has been proposed together with the so-called APF-D functional.
Here, the dispersion coefficients are obtained from the London
formula (eq 1) employing precomputed atomic polarizabilities
and ionization energies.
4.1.2. D3 approach. In 2010, Grimme and co-workers

proposed the D3 approach.85 In contrast to D2, the molecular
environment is explicitly taken into account by the empirical
concept of fractional coordination numbers (CNs). The
coordination number of an atom A in a molecule (or crystal) is
given by

∑=
+≠

− + −CN
1

1 e
A

B A

N

R R R16(4( )/(3 ) 1)A B AB

atoms

,cov ,cov (34)

where the covalent radii RA,cov/RB,cov for each element are taken
from ref 166. Atoms in different bonding/hybridization
situations have different coordination numbers, which is in
agreement with chemical intuition. This is illustrated in Figure 8
for carbon, which has a coordination number of roughly 4 in
ethane, 3 in ethene, and about 2 in ethyne. This way, the chemical
environment (type-A effect) is taken into account only in terms
of the molecular geometry.

To derive system-specific dispersion coefficients, the electric
dipole polarizability αA(iω) of the free atom as well as for the
atom in differently coordinated hydrides as model systems
(AmHn and BkHl in eq 35) was computed. All elements (Z ≤ 94)
were treated nonempirically by calculations at different
imaginary frequencies via time-dependent density functional
theory (TD-DFT).141,142,167 A variant of the PBE0 hybrid
functional with a modified amount of Fock exchange ax = 3/8
(called PBE38) in an augmented quadruple-ζ (triple-ζ for Z ≥
87) basis set has been employed. The PBE38 hybrid functional
provides accurate dynamic polarizabilities for rare gas atoms and
small molecules. It may be less accurate for electronically
complicated systems, but all reference calculations were done on
relatively simple and small model molecules. A modified
Casimir−Polder expression has been used to compute the
atom pairwise dispersion coefficients C6,ref

AB (CNA,CNB) for atoms
A and B in these reference molecules

∫π
α ω α ω
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(35)

Here, AmHn and BkHl are the reference compounds with atoms
A/B having a specific coordination number CN. The
contribution of the hydrogen atoms in the reference molecules
is subtracted. These reference compounds reflect typical bonding
situations for each element and are distinguished by their CNA. In
D3, the C6,ref

AB (CNA,CNB) values are precomputed for every
possible pair combination (both element and CN) and stored. In
the actual D3 calculation for a target system, the atom pairwise
C6
AB dispersion coefficient is evaluated as the Gaussian average of

the precomputed reference values,

=
∑ ∑

∑ ∑
C

C L

L
(CN , CN )

(CN , CN )
AB A B i

N
j
N AB

i
A

j
B

ij

i
N

j
N

ij
6

6,ref
B

B

A

A
(36)

with

= − − + −L eij
4[(CN CN ) (CN CN ) ]A

i
A B

j
B2 2

(37)

Therefore, the D3 method requires only the molecular geometry
to obtain CNA and CNB as input. For carbon and nitrogen, the
dispersion coefficient for homoatomic pairs C6

AA is plotted as a
function of the coordination number in Figure 8. For clarity, we
will drop the lengthy notation C6

AB(CNA,CNB) in favor of C6
AB,

implying that this is the system-specific dispersion coefficient
obtained via eq 36. In D3, dispersion contributions beyond the
lowest dipole−dipole order Edisp(6) are taken into account as well.
The atom pairwise dipole−quadrupole contribution Edisp

(8) is
included with the respective C8

AB dispersion coefficient, which is
computed recursively from

=C C Q Q3AB AB
A B8 6 (38)

with

=
⟨ ⟩
⟨ ⟩

Q Z
r
rA A

A

A

4

2
(39)

Here, ⟨rA
4⟩ and ⟨rA

2⟩ are multipole-type expectation values
derived from atomic densities and ZA is the atomic number of
element A. The ratio is thus an element-specific parameter that
yields good estimates of C8

AB based on C6
AB. These established

Figure 8. CN-dependent atom pairwise dispersion coefficient for
homoatomic pairs C6

AA as a function of the coordination number CNA.
The reference points C6,ref

AA are drawn as vertical sticks in the respective
colors (black for carbon, blue for nitrogen). For carbon, the structures of
CH, ethyne, ethene, and ethane (corresponding to the coordination
numbers 1−4) are depicted as well.
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recursion formulas168 give values for the dispersion coefficients
of hydrogen with only a few percent errors.169 Explicit higher
multipolar terms (e.g., Edisp

(10)) are neglected in D3 but absorbed
through the s8 scaling factor into the R−8 term. The atom
pairwise, two-body dispersion energy in D3 is then given as

∑ ∑= −
=

E s
C
R

f R( )D

AB n
n

n
AB

n
n

disp
3

6,8
damp
( )

(40)

The factors sn scale the individual multipolar contributions. The
leading term is set to unity (s6 = 1) for most functionals (except
for double-hybrid functionals, which already comprise some
MP2 correlation). This is mandatory for the correct asymptotic
decay of the dispersion energy. The higher order term s8,
however, is a parameter that is fitted (along with the parameters
in the damping function fdamp

(n) (R), see below) for each density
functional to avoid double counting at the short and medium
ranges (see Figure 2).
Two variants of D3 exist that employ different damping

schemes. The original D3 approach employs a damping function
proposed by Chai and Head-Gordon in the context of the
ωB97X-D functional147 by which the dispersion energy is
damped to zero at short distances,

=
+

f R
R s R

( )
1

1 6( /( ))
n

r n
AB adamp,zero

( )

, 0
n (41)

where a6 = 14, a8 = 16, and sr,6 and sr,8 are functional-specific
parameters. This original D3 scheme will be dubbed D3(0) in the
further context.
Inspired by the work of Johnson and Becke,83 the rational

(Becke−Johnson) damping scheme was combined with the
atom pairwise D3 method.129 Here, the dispersion energy is
damped to a finite value at short distances

=
+ +

f R
R

R a R a
( )

( )
n

n

n ndamp,BJ
( )

1 0 2 (42)

where the functional-specific parameters a1 and a2 and the radii

=R C C/AB AB
0 8 6 are introduced in the denominator. Because

of its physically more reasonable behavior at short interatomic
distances, this variant (dubbed D3(BJ) in the following) has
become the default D3 scheme in the past years.19 The different
damping behaviors of D3(BJ) and D3(0) are visualized for the
Edisp
(6) part in Figure 9. Both damping schemes do not affect the

long-range decay of the dispersion energy. However, in the short-
range part, the D3(0) dispersion energy decays to zero. This
introduces an artificial repulsive dispersion force in some
practically relevant cases, where D3(0) might thus lead to longer
bond lengths than dispersion-uncorrected DFT. Such a behavior
would be purely artificial and solely due to the damping function
as dispersion should always be attractive. Hence, D3(BJ) is
generally preferred over D3(0). Today, parameters for >40
functionals are available for either the D3(0) or the D3(BJ)
approach. The D3(0) variant remains in use only for DFA, which
already includes medium-range dispersion and in this way avoids
double-counting effects better than D3(BJ).
In the original publication,85 it was already proposed to

additionally compute the three-body dipole−dipole−dipole
dispersion energy (also called Axilrod−Teller−Muto term,
ATM):170,171

∑ θ θ θ
= −

+

× ̅

E
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R R R
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(3 cos cos cos 1)
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( )
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a b c

AB AC BC
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disp
(9),D3 9

3

damp
(9)

(43)

Here, the damping scheme in ̅f R( )ABCdamp
(9) is that of D3(0) (see

eq 41) with ̅RABC being the geometric mean of the atom pairwise
distances RAB, RAC, and RBC. It should be noted that the ATM
energy in D3 is always computed with the zero-damping
function. Because of the faster decay with R, the ATM energy is
smaller in magnitude, and hence the potentially nonphysical
effect of the zero-damping function is expected to be less
important. The dispersion coefficient C9

ABC is approximated as

≈ −C C C CABC AB AC BC
9 6 6 6 (44)

Initially, it was not clear whether it is reasonable to include the
ATM term. Its contribution to the dispersion energy is typically
<5%. Recent work,95,172,173 however, showed that its inclusion in
the D3 context is important for accurate binding energies in large
noncovalently bound complexes and molecular crystals. The
importance of many-body effects for such systems has
furthermore been highlighted in the context of the Tkatch-
enko−Scheffler method (see below).91,174,175 The total atom
pairwise and triplewise dispersion energy in D3 (dubbed D3ATM)
is then given by

∑ ∑
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(45)

Apart from its accuracy (C6 values are, on average, accurate to
∼5%),11 the major advantage of the D3 approach is the
computational efficiency. The dispersion energy is evaluated as a
sum over all atom pairs (triples). This makes it much more
efficient compared to XDM or TS models, particularly in
geometry optimizations and harmonic frequency calculations.

Figure 9.Different D3 damping schemes for the Edisp
(6) contribution of the

Kr−Kr dispersion energy. For D3(BJ) (solid black) and D3(0) (dotted
gray), the curves are given using the damping parameters for the BLYP
functional. The undamped−C6/R

6 contribution is given for comparison
(dashed black).
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Furthermore, no information about the electronic structure is
required, and only the molecular geometry is needed as input.
This is different from other “true” post-self-consistent-field
(SCF) approaches, where a quantum chemical calculation must
precede the dispersion energy calculation. Hence, D3 is easily
applicable together with semiempirical approaches130,176−179

without sacrificing either the speed of these approaches or the
accuracy of the dispersion treatment. Recently, the D3(BJ)
approach has been applied together with a quantum mechan-
ically derived force field as well.180 The degree of empiricism is
low (three functional dependent parameters), and it is the only
atom pairwise method in which the effect of the chemical
environment is explicitly taken into account (at least for the
model compounds) in the computation of the dynamic
polarizabilities. Recently, Schwabe and co-workers181 have
modified the D3(BJ) approach (called D3(CSO) for “C-Six
Only”), reducing the number of functional specific parameters to
just one while retaining roughly the same accuracy.
The atom pairwise D3 (independent of the damping function)

as well as D3ATM are consistent methods in the sense that all
dispersion contributions up to a certain order in the distance
dependence (R−8 for D3, R−9 for D3ATM) are taken into account
(see section 4.4). The exclusion of the underlying density (or
WF) is, however, a disadvantage. Whenever the electron density
around an atom in a molecule or solid is significantly different
from the one present in the reference compound, larger errors for
the dispersion coefficients can be expected. This occurs, for
example, in metal complexes where the metal centers often carry
significant partial positive charge, i.e., change their oxidation state
relative to the reference molecule. In principle, one can increase
the space of reference molecules in the C6 calculations for a
specific application. In an investigation of ionic surfaces,
electrostatically embedded clusters were used for the calculations
of dynamic dipole polarizabilities182 for Na and Mg. Likewise,
positively charged model compounds were employed as
references for organometallic Pd complexes.183 In a study by
Saue and co-workers,184 it was shown that, for C6 coefficients,
spin−orbit effects are not relevant for most elements. Because
scalar relativistic effects are included within the effective core
potentials and corresponding basis sets employed in the
computation of the D3 C6 coefficients, the atomic dispersion
coefficients compare well with four-component relativistic
Kohn−Sham results.
4.1.3. Tkatchenko−Schefflermodel. In 2009, Tkatchenko

and Scheffler presented a density-dependent, atom pairwise
dispersion-correction scheme.86 This model (dubbed TS in the
following) is restricted to the lowest-order two-body dispersion
energy Edisp

(6) and takes into account the molecular environment
via the electron density (see below). The dispersion energy in TS
is given as

∑= −E
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f R( )
AB

AB

disp
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6 damp
Fermi

(46)

The damping function fdamp
Fermi(R) is similar to the one of Wu and

Yang120 and in D2 (see eq 31). Within the TS model, the so-
called “average-energy” or “Unsöld” approximation is used.2,3,185

That is, the sum over all excitation energies in eq 24 is replaced by
an average excitation energy. This way the C6

AB are approximated
from the homoatomic ones via the Slater−Kirkwood formula,4

α α α α
=

+
C

C C
C C

2
( / ) ( / )

AB
AA BB

B A
AA

A B
BB6

6 6
0 0

6
0 0

6 (47)

with the static polarizability αA
0 of atom A (in its molecular

environment) and where C6
AA is the respective homoatomic

dispersion coefficient. For the free atoms, the static polar-
izabilities αA,free

0 and dispersion coefficients C6,free
AA are taken from

the literature.186 The homoatomic dispersion coefficients for an
atom in a molecule C6

AA, as well as the corresponding static
polarizability, are computed via an empirical relationship to the
atomic volume,187

=C v CAA
A

AA
6

2
6,free (48)

α α= vA A A
0
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0

(49)

where vA is the ratio between the ef fective volume of atom A in a
molecule and the volume of the free atom. This ratio is obtained
by a Hirshfeld partitioning,188
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where wA(r) is the atomic Hirshfeld partitioning weight for atom
A. In the TS method, changes in the polarizability of an atom A
due to the molecular environment are estimated by changes in
the atomic volume. Once the (homo)atomic data for the atoms
in the molecular environment are calculated, the C6

AB dispersion
coefficients between all atoms in the system can be evaluated
using eq 47. For the damping function, the vdW radii are
modified in a similar way

=R v RA A A
1/3 free

(52)

The free atom vdW radii are taken from the literature,189 and for
the damping function RvdW = RA + RB is used. The dispersion
energy is typically overestimated172,174 by the TS model,
particularly for highly ionic species.190 This can be alleviated,
e.g., by an iterative adjustment of the Hirshfeld partitioning
weights.191 The first approach in this direction is the iterative
Hirshfeld I scheme191, which was proposed in this context by
Bucǩo et al.190 Here, the total density of the system (ρ(r) in the
numerator of eq 50) remains unchanged, and instead, the
reference densities ρA

free(r) of the free atoms that enter the
Hirshfeld partitioning are iteratively adjusted. In contrast to a free
atom, the reference densities ρA

free(r) may then resemble the
density of a free ion (with noninteger electron number). This
causes changes only in wA(r) (eq 51), however, due to charge
preservation not in the denominator of eq 50. These reference
densities seem to be more appropriate in highly polar systems
than neutral atomic ones.190 Recently, Tkatchenko and co-
workers192 presented an alternative approach to this problem.
Here the total TS dispersion inclusive energy is computed self-
consistently with respect to changes in the electron density, i.e.,
the Hirshfeld partition weights wA(r) are kept constrained. The
induced changes in the total density ρ(r) in eq 50 improve the
unsatisfactory performance for highly polar and ionic systems.192

Overall, the degree of empiricism is comparable to the one in
D3. On the one hand, information on the electronic structure is
captured by means of the Hirshfeld partitioning. On the other
hand, the use of precomputed reference polarizabilities αA

0 and
C6,free
AA keeps the computation of dispersion coefficients simple.

These precomputed entities and their mapping to the target
system (via Hirshfeld) define the accuracy of the method.
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Molecular C6 coefficients from TS show a mean absolute relative
deviation of 5.5%.86

4.1.4. TS-based many-body dispersion scheme. In
2012, two extensions of the original, nonself-consistent TS
method were introduced by Tkatchenko et al.87 The first one is
to account for screening of the dispersion interaction due to the
chemical environment, termed self-consistent-screening (SCS)
approach. Note that the term “screening” here is somewhat
different from its normal use in the context of electrostatics
because the dispersion interaction does not involve a static
Coulomb potential. The screening by the environment is
dependent on the frequency of the electromagnetic radiation
that transmits the induced electric field (see above) and is
reflected in the dynamic polarizability of an atom A. In TS,
instead of the exact dynamic dipole polarizability, the Pade ́
approximation193 for the dynamic dipole polarizability is used,

α ω
α
ω ω

≈
+ ̅

i( )
1 ( / )A

A

A

0

2
(53)

where ω̅A is an ef fective frequency defined as

ω
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C4
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6
0 2

(54)

For this purpose, all atoms are represented as a collection of
spherical quantum harmonic oscillators (QHOs). Their coupling
influences the dynamic polarizability of each atom at a given
imaginary frequency iω. The screened polarizability αA

TS+SCS(iω)
is then obtained by self-consistently solving

∑α ω α ω α ω τ α ω= ++

≠

+i i i i( ) ( ) ( ) ( )A A A
B A

AB B
TS SCS TS TS SR TS SCS

(55)

with τAB
SR being the short-ranged175,194 dipole−dipole interaction

and αA
TS(iω) being the unscreened dynamic polarizability in TS

from eq 53. This is done for several imaginary frequencies iω, and
the resulting αA

TS+SCS(iω) are used to compute the screenedC6,SCS
AA

for homoatomic pairs by numerical integration of the Casimir−
Polder expression (see eq 26). The screened static polarizability
αA
0,SCS is obtained similarly, and both are used to calculate C6,SCS

AB

via eq 47.
To compute the many-body dispersion (MBD) energy, a

coupled fluctuating dipole model (CFDM)195 is applied. The
atoms in the system of interest are represented as a collection of
three-dimensional, isotropic quantum harmonic oscillators with
eigenfrequencies ω̅A

SCS, i.e., the “effective” frequency, which is
obtained via eq 54 by employing both the screened C6,SCS

AA and
αA
0,SCS. Then, the coupling term in the Hamiltonian for the

coupled oscillators is given as

∑ ∑ ∑ χ τ χ=
< ∈ ∈

V
A B

N

p A q B
p pq qCFDM

3 3
LR

(56)

In total 3N oscillators are set up as the basis and coupled with the
displacement χp of oscillator p from the equilibrium. However,
initially (i.e., no coupling) they are isotropic and all Cartesian
directions p or q are identical for atomA and B, respectively. τpq

LR is
the dipole−dipole interaction tensor at long range (c.f. eq 55). In
the most recent version,175 a smooth separation into short and
long range is achieved by damping the full dipole−dipole
interaction tensor τAB (see ref 136 for the full expression):

194

τ τ τ= − +

τ τ

   
f f(1 )AB AB ABdamp damp

AB AB
SR LR (57)

This way, double-counting of dipole interactions is avoided in the
dispersion energy. In MBD, a Fermi-type damping function is
used for fdamp (see eq 31).

196 Diagonalizing the 3N× 3N coupling
matrix yields the many-body dispersion energy as the difference
between the zero-point energies of the coupled and uncoupled
oscillators,

∑ ∑λ ω= −
=

+E
1
2

3
2p

N

p
A

N

Adisp
MBD

1

3
TS SCS

(58)

where λp is the pth eigenvalue of the coupling matrix. Note that
the second term in eq 58 is a summation over all atoms, because
the uncoupled oscillators are isotropic, and, consequently, has a
prefactor of three. This expression has some similarities to the
random-phase-approximation (RPA) correlation energy,197

which was pointed out by Tkatchenko et al. in 2013.136 The
overall procedure is sketched in Figure 10.
The MBD model significantly alleviates the TS problem of

overestimating the dispersion energy. Excellent performance was
reported for lattice energies of organic crystals174 as well as for

Figure 10. Schematic illustration of how to arrive at the many-body
dispersion (MBD) energy based on the Tkatchenko−Scheffler (TS)
method. The starting points are the oscillators (eq 54) from the TS
model, which are depicted as differently sized and colored circles. First,
these are coupled at short range via dipole−dipole interactions. Self-
consistent solution of these coupled oscillators yields a new set of
screened oscillators. This is schematically depicted as a change in size
and color of initially “overlapping” circles. Note that the isolated
oscillator (depicted as the “non-overlapping” circle) is not affected by
short-range dipole−dipole coupling and remains unchanged. In the last
step, the screened oscillators interact through dipole−dipole coupling at
long range, which yields the final many-body dispersion energy. The
same scheme is also valid for the related Wannier function based
approach (vdW-QHO-WF-SCS-SR).
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the association energies of large supramolecular complexes (a
selection from the S12L198 test set).175 In the latter study, the
authors pointed out the importance of including many-body
terms beyond the three-body contribution. It was found that the
truncation at the three-body level lead to errors of ∼10% with
respect to the all-order MBD dispersion energy. The three-body
dispersion energy amounts to 10−20% of the two-body
dispersion energy in MBD, which is different from D3ATM (and
XDM; see below) where the three-body energy is typically <5%.
Good results for the S12L test set198 are already obtained at the
atom pairwise D3 level, and adding the ATM contribution leads
only to small improvements.172 It is difficult to judge the general
importance of multicenter terms in different semiclassical
dispersion corrections. Short-ranged (i.e., intrafragment) terms
arising from higher orders in the PT series may implicitly be
included, e.g., within the underlying atomic polarizabilities in the
latter approaches. Because this is an ongoing debate in the
literature,80,134,172,175 we abstain from giving a final conclusion
on this topic, but instead we like to point out that the results on
benchmark sets for noncovalent interactions in large organic
complexes and organic crystals (see, e.g., Table 9) show that
MBD (as a semiclassical variant of RPA) as well as D3 and XDM
(which can be considered as semiclassical decomposition
schemes of the PT series into two- and three-center terms)
yield comparable results. The atom pairwise TS scheme tends to
overbind van der Waals complexes,174 which is overcome within
the MBD scheme (and the comprised TS + SCS procedure).
Approaches that already yield reasonable atom pairwise
dispersion coefficients (D3 or XDM) benefit to a much smaller
degree from higher multicenter terms.
MBD can be regarded as a semiclassical approximation to the

long-range, direct RPA (dRPA) correlation energy.29,136 The
latter is equivalent to the direct ring coupled-cluster doubles
(drCCD) correlation energy199,200 (the term “direct” in this
context refers to the neglect of exchange contributions). In
dRPA, many-body dispersion effects arising from multiple
excitations beyond doubles are consequently captured as the
products of so-called disconnected double excitations. Con-
nected multiple excitations beyond doubles, however, are
missing. While the correlation from dRPA arises from coupling
of excited electronic configurations in the entire system, in MBD
the long-range correlation is approximated by setting up a model
system of QHOs (one per atom and each Cartesian direction)
that interact via a dipole−dipole coupling model. This
approximation can be considered to be in line with the Unsöld
approximation, and the average frequency of the uncoupled
oscillator is estimated from αA

0,SCS and C6,SCS
AA . Although the ATM

term Edisp
(9) ∝ R−9 and faster decaying dipole many-body

contributions are included, the slightly slower decaying, pairwise
dipole−quadrupole term Edisp

(8) ∝ R−8 (cf. D3ATM in eq 43) is
neglected (see section 4.4). The same is true for corresponding
higher-order many-body terms and higher-order multipolar
terms. Nevertheless, theMBD yields amuch better description of
the dispersion energy than pure TS. Due to its comparably
simple structure and good performance, it has become one of the
most popular dispersion corrections in recent years.201 Recently,
analytic nuclear gradients for the nonself-consistent PBE+MBD
model have been implemented independently by two groups and
good results for optimized vdW complexes, peptide model
structures, and organic crystals are reported.202,203

4.1.5. Dispersion corrections based on maximally
localized Wannier functions. The vdW-WF method and all
variants thereof194,204−206 are semiclassical dispersion models

that differ from the previous models in one aspect: the dispersion
energy is not evaluated between atom pairs but instead between
the centers of localized one-electron functions (i.e., localized
occupied orbitals). In the method specification, “WF” denotes
Wannier function, which is the solid state analogue of a localized
MO.207 However, by WF we generally abbreviate wave function
and will only use the abbreviation WF for Wannier function
within the common method abbreviation (e.g., vdW-WF) in this
section. These one-electron functions are generated as maximally
localized Wannier functions208 by minimizing their summed
spread:

∑ ∑= ⟨ | | ⟩ − ⟨ | | ⟩S W r W W Wr( )
i

i
i

i i i i
2 2 2

(59)

Here,Wi is the ith Wannier function with spread Si. In the vdW-
WF approaches, the Wannier functions are approximated as
spherically symmetric Slater-type functions (i.e., resembling an
electron in a hydrogen atom),204

π
| − | = − | − |

⎛
⎝⎜
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i i
H

i i
i

3

3
(60)

where ri is the center of the orbital. Different flavors of the
Wannier function based dispersion correction have been
introduced, but in all of them the employed polarizabilities and
dispersion coefficients are obtained by relating the spread Si to
the spread of an electron in the hydrogen atom, i.e., SH = √3.
Furthermore, they are restricted to the dipolar contributions.
Two-body204−207 as well as many-body inclusive194 approaches
were presented. The vdW-WF method partitions the density-
dependent Andersson, Langreth, and Lundqvist (ALL) func-
tional209 (see section 4.2) to contributions between the centers ri
of the Wannier function and furthermore corrects for their
density overlap (see refs 204 and 207 for details). In the revised
version (vdW-WF2),205 a modified expression for the dispersion
energy has been used,

γ=
+

C
n vS n v S

n vS n v S

3
2

ij i i i j j j

i i i j j j
6

3
3 3

3 3
(61)

where ni is the number of electrons in the orbital and vi is the ratio
of the ef fective and the f ree volume of the localized orbital. The
ef fective volume is a reduced f ree volume where the amount of
reduction depends on the overlap with other Wannier
functions.205 γ is an empirical proportionality factor relating
the cube of the spread Si

3 (which is proportional to the volume)
of the Wannier function to its static polarizability (see eq 63).
The pairwise dispersion energy is then evaluated according to eq
30, employing the Fermi-type damping function from eq 31. The
vdW radii used in the damping function are again obtained from
the relationship to the hydrogen atom,

=R R
S

Si H
i

H
vdW, vdW,

(62)

with RvdW,H = 1.2 Å. On the basis of the vdW-WF2, a many-body
treatment employing quantum harmonic oscillators has been
introduced recently.194,206 The procedure resembles very much
the one described in section 4.1.4. For this, the static
polarizability of the Wannier function i is approximated by194,206

α ζ
ω

γ=
̅

=
n

Si
i

i
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(63)
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where ω̅i is the ef fective (or average excitation) frequency (c.f. eq
49) and ζ is another empirical parameter of the method. Once
the spread is known, the static polarizability as well as the ef fective
frequency are computed using the empirical parameters γ and ζ.
In the most recent variant (vdW-QHO-WF-SCS-SR in ref 194),
these are employed in eq 55 to obtain a screened static
polarizability as well as a screened ef fective frequency. Similar to
theMBD scheme, the many-body dispersion energy is computed
according to eq 58, i.e., via the CFDM as the difference between
coupled and uncoupled oscillators, but employing a different
damping scheme in eq 57. Therefore, the vdW-QHO-WF-SCS-
SR describes many-body effects (within the dipole approx-
imation) between localized orbitals instead of atoms.
4.1.6. Exchange-dipole moment model. The exchange-

dipole model (XDM) is a density-dependent, semiclassical
dispersion correction.22,83,84,210 The origin of its derivation,
however, is not the long-range Coulomb correlation. Instead,
Becke and Johnson noticed that an electron and its
corresponding exchange hole (see eq 64) lead to nonvanishing
multipole moments.211 The exchange (or Fermi) hole arises
from the Pauli exclusion principle and prevents two electrons of
same spin σ to approach each other. It is given by

∑
ρ

φ φ φ φ= −σ
σ

σ σ σ σh r r
r

r r r r( , )
1
( )

( ) ( ) ( ) ( )X
ij

i j i j, 1 2
1

2 2 1 1
(64)

Here, σ labels either spin-up or spin-down electrons, and the
summation is over all occupied orbitals i and j. The presence of
an electron at r2 reduces the probability to find another electron
at r1. Overall, the charge of the electron and its Fermi hole cancel
exactly (zero charge). However, except for some special cases
(like the uniform electron gas), the hole is not spherically
symmetric around the electron, thus leading to a nonvanishing
exchange (hole) dipole moment (exchange hole quadrupole and
higher moments are defined analogously).
At a given point in space r1, the exchange dipole moment is

given by

∫∑μ
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The exchange dipole moment μX,σ(r1) generates an electric field
that induces a response in another fragment B and vice versa.
One can therefore imagine an instantaneous, mutual interaction
between exchange and induced dipole moments in fragments A
and B, similar to the Coulomb correlation picture (see section
4.1). The resulting dipole−dipole interaction between two
fragments in XDM is proportional to the square of the respective
exchange dipole moment. Furthermore, the molecules are
fragmented into atoms, and the square of the atomic exchange
dipole moment ⟨μX,A

2⟩ is

∫∑μ ρ μ⟨ ⟩ =
σ

σ σwr r r rd ( ) ( ) ( )X A A X,
2

,
2

(66)

The Hirshfeld partitioning wA(r) is the same as in the TS
approach (see eq 51). Apart from the initially proposed XDM
method, which is based on the exact exchange hole (eq 64), a
linearly scaling variant based on the local Becke−Roussel
exchange hole212 was presented in 2005.22 The Becke−Roussel
(BR) model is a local approximation to the exact exchange hole.
This way, the squared exchange dipole moment μX,σ

2(r) (see eq
66) can be obtained locally, thus avoiding the time-consuming
integration over all space as in the exact exchange model (eq 65).
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The variable x is dependent on the density and on its curvature
(i.e., ∇ρσ2) and is determined at each point r. We refer the
interested reader to ref 22 for a detailed description of the
Becke−Roussel variant. Because of the improved computational
efficiency and similar performance for dispersion coeffi-
cients,22,213 the BR model is most widely used and can be
considered the default choice. However, all upcoming
expressions are valid in principle for both forms (exact and BR
exchange) of XDM, and thus, we will drop the index BRX.
The dispersion coefficient for two atoms can be expressed by a

modified version of the Slater−Kirkwood formula:4,83,211,214
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Again, the static polarizability αA
0 of atom A within the molecular

environment is used. It is obtained via eq 49 using the static
polarizabilities αA,free

0 of the free atoms from ref 215. Similarly,
from the higher-order exchange multipole moments, the
respective dispersion coefficients can be derived,84,134,210,216
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and
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(70)

Analogous to ⟨μX,A
2⟩, the ⟨ΘX,A

2⟩ and ⟨ΩX,A
2⟩ are the squared

exchange quadrupole and octupole moment of atom A,
respectively. For a derivation of these expressions, see refs 84
and 210. The atom pairwise dispersion energy is then given as

∑ ∑= −
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where fdamp
(n)(R) is the Becke−Johnson damping func-

t i o n f r o m e q 4 2 w i t h r a d i i R 0 =
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4 .187

In recent years, the XDM method has been extended to
include the three-body Axilrod−Teller−Muto term (see eq 43).
The dispersion coefficient C9

ABC is calculated via

μ μ μ= ⟨ ⟩⟨ ⟩⟨ ⟩

×
+ +
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(72)

with QA = ⟨μX,A
2⟩/αA

0 . Because the ATM contribution to the
dispersion energy varies significantly with the applied damping
scheme,134 it is not used by default in XDM.
Because of the density dependence, a self-consistent XDM

treatment is possible and has been presented by Kong et al.217

However, the effect on the electron density due to a self-
consistent treatment is negligibly small. Therefore, first and
second energy derivatives may be computed to a good
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approximation without a preceding XDM-inclusive SCF
procedure. Because the dispersion coefficients in XDM are
indirectly dependent on the nuclear positions, geometry
optimizations are somewhat hampered and the dispersion
coefficients are often assumed to be fixed in the gradient
calculation.218

Overall, the XDM model takes into account the electronic
structure in two ways. Like in TS, the static polarizabilities are
dependent on the Hirshfeld partitioning. Furthermore, the
perturbing dipoles (quadrupoles and octupoles) are evaluated
from the occupied orbitals (exact) or locally from the density
(BR). However, the origin of the perturbation is different from
the long-range perturbation theory definition of the dispersion
energy. The former involves fluctuations in the density leading to
transition dipoles (eq 24, and higher multipoles) involving virtual
orbitals (Coulomb correlation). In XDM, the dispersion energy
is derived from the perturbation due to an electron and its
exchange hole, thus involving only occupied orbitals (or density)
in the integration. Initially, the XDM model has been developed
as a purely heuristic approach211 that successfully mimics the
zero-point electron density fluctuations, which are responsible
for dispersion forces. However, in three independent studies it
was shown that the latter may in fact be approximated by
interacting exchangemultipole moments.219−221 In XDM, virtual
orbitals are implicitly included within the employed atomic
polarizabilities (see eqs 68−70). Good results for the XDM
approach are reported, among them the best results published so
far for any corrected DFT approach on the S12L set.201

A related approach has been presented by Heßelmann in
2012.222 Different from XDM, this so-called weighted exchange-
hole (WXhole) model does not rely on empirical data for the
static polarizabilities of the atoms. Instead, the dynamic
polarizabilies are directly computed within the exchange dipole
model, partitioned to the atoms employing Hirshfeld scheme (eq
51) and used in the numerical integration of the Casimir−Polder
integral (eq 26), which makes the method computationally more
expensive.
4.1.7. Density-dependent energy correction. Steinmann

and Corminboeuf modified the atom pairwise XDM model first
by changing the damping function223 and secondly by replacing
the BR exchange model with a GGA variant (the BR model is of
meta-GGA type).224 In the first modification, the BJ damping is
replaced by the universal damping function of Tang and
Toennies (TT) (see eq 13).114 Different from other commonly
used damping functions, it not only depends on the distance
between the atomsA and B but also on b, which itself is a function
of the interatomic separation R (for clarity, we prefer the short-
hand notation of b over the lengthy b(R) notation). In addition,
the rather involved function b depends on the Hirshfeld volumes,
a Hirshfeld-based covalent bond index225 for the atom pair AB,
and the nuclear and Hirshfeld charges of the atoms A and B.
Subsequently, it has been modified in the course of the
development of the density-dependent energy correction
(dDsC) method, and therefore we refer to the original refs
223, 224, and 226 for details. The damping function contains two
empirical parameters that are fitted for each functional.227

Furthermore, Steinmann and Corminboeuf made use of the
Hirshfeld-dominant scheme where the standard Hirshfeld
weights at position r are replaced by Hirshfeld-dominant atomic
weights wA

d(r) that can only have binary numbers. wA
d(r) = 1, if

atom A out of all atoms has the largest Hirshfeld partition weight
(see eq 51) at position r; otherwise, wA

d(r) = 0.

The second modification concerns the exchange hole
model.224 Here, a PBE-based148,149 (i.e., a GGA variant instead
of the BR meta-GGA form in XDM) exchange hole is used,

μ =σ
−srr( ) (2 e )X s

s
dDsC ,

2 2
(73)

where the reduced density gradient224 is

ρ ρ= |∇ |s kr r( ) /(2 ( ))F (74)

with the local Fermi wave vector,

π ρ=k r(3 ( ))F
2 1/3

(75)

and rs is the Wigner−Seitz radius πρ=r r3/(4 ( ))s
3 . Within the

expression in eq 73, two parameters were adjusted and fixed
according to reference data for rare gas dimers.224

In contrast to XDM, only the dipolar term (i.e., C6
AB) is taken

into account. The effect of the higher-order multipole terms C8
AB

andC10
ABwas included in the “dDsC10” scheme but was not found

to be significant for the overall performance.226 A self-consistent
treatment for dDsC was presented,228 and the effect of the
dispersion interaction on the electron density was found to be
negligible. Although the accuracy of dDsC is comparable to
standard XDM, a central advantage of most semiclassical
dispersion corrections is lost. In dDsC, the generally simple
structure of most damping functions (directly dependent onR) is
replaced by a very involved scheme that requires integration over
the entire Cartesian space (for the Hirshfeld volumes and bond
indices) and is both directly and indirectly dependent on R.
Therefore, in addition to the density-dependent dispersion
coefficients, the density-dependent damping function further
hampers the formulation of efficient analytical gradients.227

However, for dispersion effects in the excited state, it might be
advantageous that the damping function automatically adjusts to
the electronic state.

4.1.8. Local-response dispersion model. The local-
response dispersion (LRD) model by Sato and Nakai229,230 is
an atom pairwise, density-dependent dispersion correction.
Derived form second-order perturbation theory, the Casimir−
Polder equation (see eq 26), however, is solved ad hoc in an
approximate fashion involving only the density (i.e., occupied
orbitals).
The dispersion energy in LRD is given as

∑ ∑= −
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(76)

The dispersion coefficients are obtained for different interaction
terms arising from the multipole expansion of the Coulomb
operator,

∑= ′ ′
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C C l l l l( , )n
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l l l l
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1 1 2 2

1 1 2 2 (77)

Here, l1, l1′, l2, and l2′ are angular momentum quantum numbers
and the sum is over all terms fulfilling the condition l1 + l1′ + l2 + l2′
+ 2 = n. Because of their negligible impact on the dispersion
energy, the l1 ≠ l1′ and l2 ≠ l2′ combinations are not considered.15
For a set of l1 and l2 that lead to a given n, the dispersion
coefficient CAB(l1,l2) is evaluated as
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Here, Sm1m2

AB(l1l2) is a geometric factor taking into account the
distance between the two atomsA and B as well as the orientation
(via m1 and m2) of the interacting mulitpoles.15 αmm′

A(ll)(iω) is the
local atomic l-pole−l-pole polarizability at an imaginary
frequency ω. The local expression for the polarizability is
derived from the local-response function proposed by Dobson
and Dinte,231
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where wA,Becke
2(r) are the Becke weights,232 ρ(r) is the electron

density at position r, and Rl
m represents a solid harmonic. For

ω0(r), the expression proposed by Vydrov and Van Voorhis is
used,233
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(1 )
30 F

2
2 2

(80)

where kF is the local Fermi wave vector, s is the reduced density
gradient as given in eqs 75 and 74, respectively, and λ is an
empirical parameter. The damping function in eq 76 is given by
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Here, κ α α̅ = + +R R[( ) ( ) ]A BAB
0 1/3 0 1/3

0.
229 κ and R0 are global

constants that were fitted to rare gas potential energy curves from
high-level CCSD(T) calculations.234 The static polarizabilities
are obtained as αA

0 = 1/3Tr[αA(11)(0)], i.e., employing eq 79 for
the dipole−dipole case at zero frequency. This type of damping
function was first proposed by Kamiya et al. for the C6 term.
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From its theoretical derivation, the LRD is related to the
density-dependent, nonlocal ALL209 dispersion correction (see
section 4.2) andmainly differs by its atom pairwise partitioning of
the dispersion energy. Interatomic and intermolecular dispersion
coefficients are accurate to ∼6%,230 i.e., comparable to the
dispersion coefficients in the TS model (5.5%)86 and in the D3
model (4.7%).11 So far, it has been only combined with variants
of the BOP GGA functional.161,236,237 An extension of the LRD
approach to systems in electronically excited states (employing
the excited-state density) has been presented as well.15 For a
recent and more detailed review of the LRD approach, see ref 15.
Related to LRD, although rarely used, is the dispersion correction
by Alves de Lima.238

4.2. Nonlocal density-based dispersion corrections

In this subsection we will discuss the essential developments of
nonlocal (NL) density-dependent dispersion corrections with a
special focus on recent efforts. All methods discussed here share
the common feature that they only need the electron density as
input to compute the dispersion energy and the corresponding
integral kernel depends nonseparably on two electron
coordinates (hence, the name “nonlocal”, which refers to the
DFT context where (semi)local functionals normally depend
locally only on a single position in space).

As an instantaneous electron-correlation effect, vdW inter-
actions should basically be included in the exchange-correlation
energy EXC[ρ]

239 for which, however, various approximate forms
are used in practice. VdW density functionals (vdW-DFs)
constitute a first-principles DFT treatment of medium- and long-
ranged interactions by means of a nonlocal exchange-correlation
functional. The specific form of the latter defines the various
methods that will be described in the following. For a more
comprehensive discussion and historical perspective, particularly
of the Rutgers−Chalmers vdW-DFs, the reader is referred to the
recent review articles of Langreth et al.240 and Berland et al.241

Furthermore, the review article by DiLabio and Otero-de-la-
Roza218 also contains a section about nonlocal density-based
dispersion corrections.
Semiclassical methods that rely on the electron density to

partition dispersion coefficients (e.g., XDM, TS, MBD, and
LRD)22,86,87,229 are described in section 4.1, and exchange-
correlation functionals that solely depend on a local density
expansion are discussed in section 4.3.

4.2.1. van der Waals density functionals. Nonlocal vdW
functionals model the contribution of the dispersion energy
arising from electron density fluctuations in distant regions of a
system by explicitly accounting for the interaction of those
distant parts. The nonlocal correlation energy reads

∫ ρ ρ= ′ Φ ′ ′E r r r r r r
1
2

d d ( ) ( , ) ( )c
NL

(82)

where Φ(r, r′) defines the correlation kernel. Basically, nonlocal
functionals calculate the same attractive dispersion interaction as
the C6-based approaches but without the use of a local
partitioning. Because the correlation energy (eq 82) is defined
for the entire range of interaction distances and is added to the
semilocal exchange correlation without specifying atoms or
fragments, nonlocal functionals are often referred to as
“seamless”. In contrast to similar approaches such as, e.g., RPA,
all nonlocal functionals do not depend explicitly on the orbitals
(neither virtual nor occupied). They only depend on the density
and its derivatives. Usually, nonlocal vdW functionals are
constructed with little empiricism. Early studies with fundamen-
tal impact on the development of dispersion functionals are, for
example, those of Zaremba and Kohn242 and of Rapcewicz and
Ashcroft (RA).243 In the latter study it was pointed out that the
coupling between fluctuations gives rise to an attractive
interaction, which originates in the lowest-order fluctuation
term of the interacting electron gas. Unlike DFT, which is linked
to densities, this interaction is linked to density fluctuations
either via dynamical properties or via explicit excitations.
In the separated (nonoverlapping) fragments limit, the

second-order perturbation theory expression for the dispersion
interaction is given by eq 29. The central quantity is the density−
density response function χ or charge density susceptibility,244

i.e., the linear response of the electron density with respect to a
local perturbation in the external potential with frequency ω,

∫δρ ω χ ω δ ω= ′ ′ ′i Vr r r r r( , ) d ( , , ) ( , )ext
(83)

The RA work showed that a plasmon picture can be applied to
formulate a theory of vdW interactions in an electronic liquid,
and hence the long-term experience with LDA and GGA, which
can also be formulated in terms of plasmons, was useful for the
further developments leading to vdW-DF. The density−density
response function is related to the dynamic polarizability13,244 by
(cf. section 4.1 and eq 26 on pairwise dispersion corrections)
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∫α ω χ ω= ′ ′ ′i ir r r r r r( ) d d ( , , )ij i j (84)

with i and j denoting the components of the polarizability tensor.
The charge density susceptibility of the whole system can be used
to reformulate the adiabatic connection formula, leading to a
formally exact expression for the correlation energy,

∫ ∫
∫
π

λ

ω χ ω χ ω

= − ′
| − ′|
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∞

E

i i
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c
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1

0 0 (85)

with λ representing the coupling strength variable and χ0
denoting the response function for the noninteracting system.
In the KS scheme, it has an analytical expression,

∑ ∑χ ω
ω

ω ω
φ φ φ φ′ = −

+
′ ′ir r r r r r( , , ) 4 ( ) ( ) ( ) ( )

i a

ai

ai
i a a i0 2 2

(86)

where a runs over virtual and i runs over occupied orbitals andωai
represents the orbital energy differences. It should be noted that
the explicit calculation of the response function χλ for an
interacting many-body system is quite cumbersome for extended
systems.
All modern vdW-DF variants are based on the functionals

derived in the seminal works of Dobson and Dinte (DD)231 and
Andersson, Langreth, and Lundqvist (ALL),209 published
independently in 1996. The DD/ALL functionals have similar
expressions and can be considered as modifications of the RA
functional that employ the density-response function of the
homogeneous electron gas,

χ ω
π ε ω π

ω

ω ω
= − =

−

⎡
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1
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1

4
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2
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(87)

with ε(ω) = 1 − ωp
2/ω2 denoting the dielectric function and

ω πρ= 4p representing the plasmon frequency of the uniform
electron gas with density ρ. Applying the local approximation to

the plasmon frequency ω πρ=r r( ) 4 ( )p , the DD/ALL
dispersion energy can be written as

∫
π

ω ω
ω ω

= − ′
′

+ ′
E

r
r r

r r

r r
3

32
d d

1 ( ) ( )

( ) ( )disp
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2
12

6
p p

p p (88)

A prerequisite of this functional is the requirement of
nonoverlapping interacting systems. The calculation of the
dynamical polarizabilities and the dispersion interaction
coefficients can be carried out in the same fashion.209 Note the
close connection between eq 88 and London’s formula (eq 1 and
eq 22) for the vdW interaction between two atoms A and B
separated by the distance R if only one excitation frequency ωA/B
is considered for each atom.
However, the DD/ALL theory also has several disadvantages.

Similar to RA, it contains a cutoff that specifies the spatial regions
where the response to an electric field is set to zero, and the
results can be very sensitive to the specific cutoff value.
Nonetheless, results based on DD/ALL compare reasonably
well with those of first-principles calculations of several atoms
and molecules.245 Moreover, the DD/ALL functional provides
one of the foundations for the development of the more general
vdW-DF, which was proposed nearly a decade later.

Furthermore, it proves that a functional with a quadratic density
dependence can be used to model London dispersion forces.209

More recently, Graf̈enstein and Cremer246 combined a GGA
with an efficient evaluation of the ALL energy (and forces) in a
partitioning scheme which they denoted quasi-self-consistent-
field dispersion-corrected density-functional theory formalism
(QSCF-DC-DFT). More precisely, the long-range-corrected
Perdew−Burke−Ernzerhof exchange functional and the one-
parameter progressive correlation functional of Hirao and co-
workers were combined with the ALL long-range correlation
functional. The time-demanding self-consistent incorporation of
the ALL contribution in the DFT iterations necessary for the
calculation of forces is avoided due to a posteriori calculation of
the ALL term and its gradient using an effective separation of the
global and intramonomer coordinates. They found good
agreement with coupled-cluster calculations for, e.g., the benzene
dimer.246

Langreth and co-workers subsequently proposed modifica-
tions of the ALL functional for various systems, including, e.g., a
nonoverlapping formulation with a cutoff to account for
overlaps,247 a study of parallel infinite jellium surfaces,248 and a
functional for layered structures called vdW-DF0.249 The latter
treats screening by solving the Poisson equation, i.e., mapping
the calculation of Ec

NL onto an electrodynamics problem.248

Dispersion interactions are often connected with asymptotic
formulas, and in order to deal with the singular behavior
occurring at small separations, saturation functions have been
introduced. However, dispersion forces are also important for
chemical bonds and reactions and, hence, are relevant in an
extensive region of medium-range separations. While nonlocal
correlation at short and medium range arises from various
different plasmon modes and electron−hole pair excitations, the
asymptotic behavior is described by long-wavelength excitations,
i.e., the plasmon model for the small wavevector limit. Moreover,
the known constraints for the homogeneous electron gas should
be retained.250 Hence, a generally applicable vdW-DF should be
able to seamlessly connect between the description of the
covalent bond regime and noncovalent binding separations.
vdW-DF1, proposed in 2004 by Dion et al.,251,252 is the first

truly general vdW functional. In vdW-DF1, the correlation
energy is given as the sum of a local part, represented by LDA
correlation, and a long-range nonlocal part according to eq 82:

= +‐E E Esr nl
c
vdW DF1

c c (89)

An important condition for a “seamless” functional is that the
nonlocal part of the correlation energy vanishes for the uniform
electron gas in order to avoid double counting. In the vdW-DF1
functional, approximations are introduced to the adiabatic
connection formula (eq 85) based on a second-order expansion
of S = 1 − ε−1 (ε is the dielectric function) with a plasmon pole
approximation to its plane wave representation. Using these
approximations, the adiabatic connection formula is integrated in
the coupling constant λ. The resulting kernel (employed in eq
82) can be reformulated as a function of two variables d and d′
that only depend on the electron density ρ, the distance between
r and r′, and the gradient of ρ at those points. Their expressions
read

= | − ′|d qr r r( )0 (90)

′ = | − ′| ′d qr r r( )0 (91)

where
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includes the correlation energy densities, LDA exchange, and the
reduced density gradient,

ρ
π ρ

= ∇
s

2(3 )2 1/3 4/3
(93)

as well as the parameter λ = 0.8491/9 controlling the relative
weight of the gradient correction. The kernel Φ(d,d′) has a
numerically complicated expression, including a spatial double
integral. However, the existence of the intermediate d variables
facilitates the precomputation of a lookup table forΦ, and hence
its values and derivatives can be efficiently interpolated in the
actual SCF calculation.
A self-consistent plane wave implementation of vdW-DF1 has

been reported by Thonhauser et al.253 and for Gaussian basis sets
by Vydrov et al.254 In both cases, analytic energy gradients
needed for geometry optimizations are available. The self-
consistent treatment ensures that the change of the electron
density due to dispersion effects is accounted for. The
computational demands for calculating the nonlocal correlation
energy become the bottleneck in the case of a semilocal exchange
functional. However, it is not more costly than evaluating the
nonlocal Fock exchange energy contribution in a hybrid or range-
separated hybrid functional.254,255 More efficient implementa-
tions for plane wave basis sets have been reported,256 as well as an
AO-based linear scaling implementation.257

The main field of application for the vdW-DF1 functional is
systems with extensive electron−electron delocalization (effi-
cient three-dimensional incorporation of long-range correlation
effects for the homogeneous electron gas) such as, e.g.,
physisorption, metal surfaces, and interactions with graphene,
where semiclassical models are not reliable. A review of typical
applications has been published by Langreth et al.240 In the
original implementation, the revPBE functional was used.258

Several other exchange functionals have been explored by other
authors.259 Opposed to its success for many solid-state
applications, vdW-DF1 tends to underestimate hydrogen bond
strengths and to overestimate molecular separations.88,233

Addressing the major problems in vdW-DF1, particularly for
molecular interactions in the overlapping regime, Lee et al.
proposed an improved functional denoted vdW-DF2.88 The
over-repulsive revPBE functional was replaced with the revised
version of the PW86 functional (rPW86).88,260 Additionally, the
coefficient controlling the gradient correction to LDA in eq 92
was changed using the known behavior in the large electron
number limit.261 An improvement is evident in the calculation of
lattice energies and geometries of molecular crystals,262 but the
largest improvement is achieved for small molecules. vdW-DF2
greatly improves the interaction energies for small, noncovalently
bound organic complexes compared to vdW-DF1 (see also
section 5.4). However, some problems with bulk matter and
weakly chemisorbed systems remain. The newest development,
vdW-DF-cx,263 is driven by the aim of using a modified exchange,
which should consistently describe all relevant density regions
and, hence, will also be able to describe weak chemisorption
accurately.263 The vdW-DF family of functionals, specifically
vdW-DF2, are in widespread use nowadays in the physics
community. They are implemented in popular solid-state
program packages like VASP,264−266 Quantum ESPRESSO,267

and SIESTA,268 as well as in Q-Chem269 for molecular
calculations.

4.2.2. Vydrov and Van Voorhis functionals. Vydrov and
Van Voorhis (VV) constructed a functional called vdW-DF-09233

that includes reference-system optimization also for the nonlocal
part but basically retains all essential constraints of vdW-DF. To
improve on the poor performance of the original vdW-DF
approach for noncovalently bound molecular complexes, VV
proposed several modifications that led to the VV09270−272 and
VV10 functionals.89 VV analyzed the problems in the vdW-DF
and its inability to couple with either long-range corrected
functionals or nonlocal Fock exchange. The VV family of
functionals includes a small number of adjustable parameters
(one and two, respectively) but violates a few conservation laws
enforced in the original vdW functionals by Langreth and co-
workers.271,272 However, due to the additional flexibility, the
results are significantly improved for molecular complexes.
Specifically, VV09 includes an adjustable parameter that is fitted
in order to reproduce atomic C6 values. The latter are known to
be in severe error for vdW-DF functionals (in particular for vdW-
DF2 with errors of ∼60%).273 Additionally, VV09 and VV10 are
applicable to spin-polarized (open-shell) systems, and the
integral kernel in eq 82 is analytical.
VV10 is the most accurate (for molecular systems) yet

simplest functional89 in the VV family. In the original VV10
scheme, the exchange functional can either be revised PW86
(rPW86)88,260 or LC-ωPBE (with ω = 0.45). The former is
denoted simply VV10 (parameters C = 0.0093 and b = 5.9; see
Table 1) and the latter is LC-VV10 (C = 0.0089 and b = 6.3). In

both of them, the semilocal correlation functional is PBE
correlation, and they depend on a spatially varying gap ωg(r) in
the plasmon-dispersion model. The nonlocal correlation energy
in VV10 can be written as given in eq 82. The correlation kernel is
introduced ad hoc according to the VV’s experience,

Φ ′ = −
′ + ′gg g g

r r( , )
3

2 ( ) (94)

with (g′ and related primed quantities analogously)

ω κ= ′ = | − ′| +g g r r r r r r( , ) ( ) ( )0
2

(95)

The other quantities read

Table 1. Optimized Values for the b Parameter (in a.u.) of
Various DFT-NL Methods (def2-QZVP Basis Set) Taken
from the Work of Aragó et al.277 for the S66276 NCI
Benchmark Set; The C Parameter (in a.u.) Is Kept at Its
Original Value of 0.0093

hybrid b (meta) GGA b double hybrid b

revPBE0 4.3 TPSS 5.0 PBE0-DH 8.3
revPBE38 4.7 rPBE 4.0 TPSS0-DH 6.8
mPW1PW 5.3 revPBE 3.7 revPBE0-DH 5.7
PW1PW 7.7 PBE 6.4 B2PLYP 7.8
PBE0 6.9 BLYP 4.0
PW6B95 9.0 rPW86PBE 5.9
B3PW91 4.5
B3P86 5.3
B3LYP 4.8
TPSS0 5.5
TPSSh 5.2
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with ωp being the local plasma frequency (see above) and the
local band gap273
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C is a fitted parameter and the other component of g reads
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where ν π ρ= (3 )F
2 1/3 is the local Fermi velocity and b is another

adjustable parameter introduced in VV10 (in addition to the C
parameter already present in VV09).
To ensure that the long-range correlation energy vanishes in

the uniform electron gas limit, it is defined as the nonlocal part
plus a constant multiplied by the number of electrons in the
system,
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The VV10 functional is rather easy to implement and yields an
improved error statistic formolecular NCI benchmark sets,255,274

which can be attributed to the flexibility provided by its
adjustable, functional-dependent parameters, b and C. The latter,
which was originally fitted on the S22275 test set for optimum C6
coefficients, is usually not refitted because its influence is rather
small and changing this parameter, which determines the long-
range behavior, will lead to artificially large or small C6
coefficients. Fitting the short-range attenuation parameter b,
however, is important to meet the functional characteristics (i.e.,
inherent underbinding and overbinding tendencies, respectively)
and to avoid spurious medium-range contributions, which can
strongly decrease the accuracy. This can be related to the various
damping functions (eqs 13, 31, 41, 42, and 81), which have been
introduced for the semiclassical dispersion models in section 4.1.
Hujo and Grimme274 were the first to show that the VV10
dispersion correction with an adjusted b parameter can be
successfully coupled to different standard functionals in a similar
way as the “functional name-D3” combination (termed DFT-NL
in analogy to DFT-D3 or for specific functionals as “functional
name-NL”).
Table 1 gives an overview of fitted b values (for the S66276 test

set) for various DFT-NL methods in use.277 The short-range
damping parameter can be used to judge the capabilities of the
underlying semilocal density functional to describe London
dispersion interactions. The rather repulsive GGAs like revPBE
and BLYP have parameters around b ≈ 4 (larger VV10
contribution at short range) while the more attractive GGAs
like PBE, B95, and all double-hybrid functionals need a stronger
damped VV10 contribution with b ≈ 8.
The results for the S66 set are given in ref 255, and the results

for the S22 set are compared to other dispersion corrections in
section 5.4 of this Review. The results of Vydrov and Van

Voorhis255 for the S66 benchmark set revealed that vdW-DF2
tends to underbind molecular dimers on average, specifically
those involving aromatic systems. In contrast, the semilocal
VV10 overbinds hydrogen bonds, but this is cured when using
the long-range corrected version, LC-VV10, which works
specifically well for interactions between small molecules.255,278

However, results for layered systems indicate an inferior
transferability across length scales of VV10 compared to vdW-
DF.279,280 This shortcoming may be due to the crude mechanism
used to account for the saturation of vdW interactions at shorter
separations because the constraint-based mechanisms inherent
to vdW-DF are missing. Furthermore, VV10 would yield the
wrong infinite separation limit for highly polarizable materials
like, e.g., two interacting graphene sheets. On the other hand, the
VV10 framework can easily be adapted to accurately describe
different classes of systems. For example, Björkman reported a
special-purpose functional for layered systems281 (VV10sol).
VV10 can also easily be coupled with hybrid and double-hybrid
functionals, thus leading to a better asymptotic exchange
behavior.255,274 Hujo and Grimme274 also tried to obtain a
general formula for the parameter b for hybrid density functionals
dependent on the amount of the nonlocal Fock-exchange
admixture (HF-NL was fitted for this purpose as a side product),
but no simple relation between the optimum value of b and the
amount of Fock exchange included could be found. Hence, they
suggested to optimize b for every density functional individually.
For molecules involving weak hydrogen bonds, which are
significantly influenced by dispersion interactions, the VV10
functional (and to a lesser degree also the vdW-DF2) showed
good performance in a study performed by the same authors.282

Since dispersion corrections also influence the description of
thermochemistry where strong bonds are typically formed, it has
to be tested whether the VV10 dispersion correction also
improves the performance of density functionals for thermo-
chemistry and kinetics. Hujo and Grimme investigated this point
in detail using the unbiased and large GMTKN30283

thermochemical database. They combined various GGA density
functionals and global hybrids with the NL part of VV10 and fit
the latter to the S22 set of NCI energies by adjusting only one
parameter, i.e., the GGA part was not modified. Furthermore,
they noted that the estimated accuracy for asymptotic molecular
dispersion coefficients is slightly superior for D3 compared to
VV10. The NL correction was applied nonself-consistently, i.e., a
standard SCF run with the semilocal (hybrid) potential was
performed first, and the Ec

VV10 term based on the converged
density was added. All VV10-type functionals performed well for
the complete GMTKN30 database with an overall accuracy
comparable to that of the respective DFT-D3 methods. Notably,
the density-based dispersion correction produced smaller errors
for some important chemical reaction energies while the accurate
description of noncovalent interactions was still preserved.
Possible electron-correlation double-counting effects were found
to be of overall minor relevance. In agreement with the findings
reported in ref 89, it is observed that the VV10 correction works
best with rather repulsive functionals, i.e., those that give no
significant binding for vdW complexes. Compared to the other
tested VV10-type functionals, B3LYP-NL provides the best
accuracy for basic properties, reaction energies, and the complete
GMTKN30 database, while still yielding reasonably accurate
results for noncovalent interactions.
Different from semiclassical corrections, vdW-DFs work well

for metals for which partitioning of dispersion forces into atomic
contributions is not well-defined. In a recent study183
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investigating the thermochemistry of reactions involving large
transition metal complexes in which long-range intramolecular
London dispersion interactions contribute significantly to their
stabilization, it was found that both modern dispersion-corrected
density functionals, PW6B95284-D3(BJ) and B3LYP-NL, agree
well with the experimental and theoretical DLPNO-CCSD(T)23

reference reaction energies. Hence, the local dipole polarizability
model in VV10 seems to reflect the change in the electronic
environment in the reaction quite well, and the problem of
computing dispersion effects for transition metal complexes
seems to be less severe than often claimed. The very good
agreement between conceptually quite different dispersion
corrections (VV10 vs D3) is encouraging. For a comprehensive
discussion on the performance of dispersion-corrected DFT
methods for organometallic complexes, the reader is referred to
the recent review article by Sperger et al.,285 and for a general
view on the role of noncovalent interactions in transition metal
coordination, see the article by Petrovic ́ et al.286
A self-consistent implementation of VV09 and VV10287

including analytic gradients for geometry optimizations is
available in the Q-Chem program package.269 Single-point
energy calculations with VV10 (and other DFT-NL variants; see
Table 1) on molecules can be also performed with the ORCA
quantum chemistry program,288 while the version implemented
in TURBOMOLE289 can also compute analytical gradients.

4.3. Effective one-electron potentials and further aspects

Although the London dispersion interaction arises due to
correlated electron movement and is intrinsically a two-particle
interaction, it can be empirically described to some extent via
effective one-electron potentials. As we have seen in the previous
sections, it is indeed possible to describe London dispersion by
just knowing local properties such as the local dynamic
polarizability. However, the methods reviewed in this section
try to describe dispersion interactions even without nonlocal
density information or considering dynamical (frequency-
dependent) properties. Basically, two different one-electron
approaches are commonly used: atom-centered external
potentials (which are normally applied to efficiently model
core electrons) and semilocal density functionals, which are
capable of describing dispersion interactions at least in the
overlapping region.
4.3.1. External potentials. The idea of dispersion-corrected

atom-centered potentials (DCACPs) can be explained by early
works of Feynman.290 The London dispersion force between two
separated atoms is interpreted as arising from distorted charge
distributions with higher concentrations between the nuclei
compared to the free atoms. This distortion from the central
symmetry induces a dipole moment in each atom, which leads to
an effective attraction of the positively charged nuclei. In this
case, the nuclei are attracted by the distorted charge distribution
of their own electrons.291 This distorted charge distribution due
to dispersion has been demonstrated recently for two interacting
Drude oscillators.292 Although it does not describe the physical
origin of dispersion interactions, the Feynman picture can be
used to explain the effective attractive force and why it may be
modeled through modified external potentials. This picture does
not involve the “cause” of dispersion effects, which are rooted in
instantaneous electron correlations and not in static dipoles.
Röthlisberger, von Lilienfeld, and co-workers describe London

dispersion by adding atom-centered potentials to the external
potential otherwise generated solely by the nuclei.293,294 Early
applications include weakly bonded complexes of aliphatic and

aromatic carbon compounds, biomolecules, hydrogen-bonded
systems, and adsorption on graphite surfaces.295−298 Similar
approaches were proposed by Sun et al. combining local atomic
potentials with GGA density functionals in a converged plane
wave basis set.299 DiLabio and co-workers designed dispersion-
correcting potentials for global and range-separated hybrid
functionals, which are evaluated in a fixed Gaussian orbital basis
set of small and medium size.300−302 DCACPs specifically
designed for a certain DFA/basis set combination are typically
called “DCPs” in the literature. Recently, a DCP variant in
combination with the D3 dispersion correction has been
published.303 The D3 covers the long-range part, while the
DCP improves the semilocal density functional description in the
medium-range and bonded region.
For the mathematical form of the potentials, projected

Gaussian functions corresponding to different angular momenta
are typically used,
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where r is the distance from the nuclei, Pl is the projection
corresponding to the angular momentum l, and the coefficientsC
and exponents α have to be optimized on certain training sets for
the considered elements. These forms are not uncommon and
are normally used, for example, to replace core electrons of heavy
elements to effectively describe their relativistic behavior304,305

and correct for self-interaction errors in GGA density func-
tionals306,307 or underestimated band gaps, respectively.308 They
are available in all major quantum chemistry codes and have a
high degree of flexibility. This flexibility can be used to adjust the
external potential on large reference databases. The “first-
generation” DCACPs have been calibrated against MP2
reference data,309,310 and later versions are optimized on basis
set converged CCSD(T) reference energies. A summary of the
parametrized elements is given in Table 2. The original DCACP
potentials are parametrized with the Goedecker or Troullier−
Martins pseudopotentials for different GGA density functionals
(PBE, BLYP, and BP86) and are available for organic as well as
rare gas elements. The DCP potentials are typically designed
with the B3LYP hybrid functional for the elements H, C, N, and

Table 2. Summary of Available Dispersion-Corrected Atom-
Centered Potentials

DCACP DCP

element Goedeckera
Troullier−
Martinsa

CP
correctedb

non-CP
correctedb

H yes yes yes yes
B yes yes yes yes
C yes yes yes yes
N yes yes yes yes
O yes yes yes yes
S yes yes no no
He yes yes no no
Ne yes yes no no
Ar yes yes no no
Kr yes yes no no

aElements H, C, B, O, He, Ar, and Kr from ref 309. S from ref 310
tested for the PBE, BLYP, and BP density functionals. bParametriza-
tion for H, C, N, and O done on B3LYP/6-31+G(2p,2d) level either
with or without a counterpoise (CP) correction (other functionals and
basis sets have been tested as well).35,300,301
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O. This limited list (originating from the parametrization
problem) directly translates to a restricted applicability, which
is not the case for most of the other modern dispersion
corrections considered in this Review.
In contrast to the C6-based, post-SCF energy corrections, the

DCPs influence the SCF by the additional external potential. Due
to the nonspherical symmetry of the potential for l > 0, electron
densities in different chemical environments behave differently.
For instance, the DCPs are able to distinguish sp2 and sp3

carbons (type-A effects), which is a prerequisite for an accurate
London dispersion correction. Although the current forms of
DCPs do not reproduce the correct 1/R6 London limit correctly,
it is in principle possible to improve this behavior by inclusion of
amore complete set of (high l) potential functions. However, this
also increases the numerical and parametrization complexity.
While the three-center ECP-type integrals are typically evaluated
much faster than the four-center integrals needed for the
Coulomb energy, small exponents combined with a high angular
momentum function can hamper the SCF convergence
significantly. To which extent higher-order effects (many-body
interactions and higher multipoles) can be fitted into the DCP
parameters is currently not clear. Although a direct inclusion of
the correct physical interactions is often superior to an
“overfitting” prone determination of a too large parameter set,
this has to be specifically tested on benchmark systems. The
recent composite method of DiLabio and co-workers (B3LYP-
DCP/6-31++G(2p,2d)) shows excellent performance on small
NCI benchmark sets like S22 and S66.35

4.3.2. Semilocal functionals. Fundamentally different one-
electron approaches are the various semilocal density functionals
that incorporate London dispersion forces in the medium
distance range by construction of the functional form. In all
semilocal functionals the correlation kernel is expressed in a finite
expansion of the local density, which decays exponentially.311,312

Thus, long-range vdW interaction with the −1/R6 behavior
cannot be described. However, in a noncovalently bonded
complex around the equilibrium distance, both fragments have a
significant WF/density overlap; thus, it is possible to extract
information about the attractive dispersion interaction from the
accumulated density and its distortion.
Early density functional developments have already been

tested for their capabilities to describe binding energies and
geometries of nonbonded systems like rare gas dimers or π-
stacked benzene dimers (see section 3). Standard global hybrid
functionals like B3LYP53,54 perform rather badly.276,313 Progress
was made with the X3LYP functional for rare gas dimers and
strongly hydrogen-bonded systems, but the benzene dimer could
not be described well.314−316 A combination of Hartree−Fock
exchange and Wilson−Levy correlation was used for studying
weakly bonded systems with reasonably accurate results.317

A step forward in functional development was achieved by
using Taylor expansions in the exchange-correlation functionals
and incorporating higher orders in the gradient derivative. These
functionals typically depend on the local spin density ρσ, its

dimensionless derivative =σ
ρ

ρ

|∇ |σ

σ
s 4/3 , and the local kinetic energy

density τσ =∑i |∇φiσ|
2. The Tao−Perdew−Staroverov−Scuseria

(TPSS) meta-GGA functional (and its hybrid variant
TPSSh)318,319 can describe rare gas dimers around their
equilibrium distances reasonably well (although not accurately)
but fail for larger vdW complexes and, of course, cannot
reproduce the correct long-range behavior.319,320 A specifically
refitted Perdew−Wang functional in a hybrid model

(mPW1PW) was also able to describe some rare gas dimers
with satisfying accuracy.321 Becke optimized the exchange-
correlation functional by a systematic Taylor expansion and fitted
the dozens of parameters toward thermochemical reference
data,151 leading to the widely used B97 form. Although it was not
without criticism, Handy and co-workers investigated the
capabilities of these flexible forms322,323 further without
considering explicit dispersion corrections but obtained only
limited improvement for some noncovalently bound systems.
The usage of a flexible functional form with extensive

parameter fitting on huge reference data sets was brought to
perfection by Truhlar and co-workers in the Minnesota
functional family. Their general strategy with a detailed
benchmarking (in comparison with other approaches) is
outlined in ref 324. A sketch of the successive developments is
summarized in Figure 11, sorted chronologically and according

to the amount of Fock exchange included. The design strategy of
all Minnesota functionals is similar. First, a parametrized
expansion of the exchange-correlation terms is introduced.
Then, the parameters are fitted on a broad set of reference
systems, generating various parameter sets for different target
properties. Typically, a meta-GGA for organometallic systems, a
large Fock-exchange (up to 100%) variant for excitation energies,
and a general purpose functional with a medium amount of Fock
exchange is generated. Finally, the accuracy of the density
functional is tested on benchmark sets that differ from the
training set used for the parameter determination.
In the first development (M05325 and M05-2X325−327), the

exchange takes the following form

∫∑ ∑ ω= ϵ
σ

σ σ
=

E ard ( )x x
i

m

i
iM05 PBE

0 (102)

The basis is the PBE148,149 exchange-energy expression multi-
plied by a series expansion using the Becke measure of the

exchange-hole locality328 ω = τ τ
τ τ

−
+

/ 1
/ 1

unif

unif to the order m = 11.

Some coefficients ai are fixed by certain constraints (e.g., a0 = 1 to
recover the uniform electron gas limit), while the rest are treated
as free parameters. The M05 correlation is based on ingredients
from theHCTH,323 BMK,329 and B95330 functionals with 10 free
parameters. In the next generation (M06-L,331 M06,332 M06-
2X,332 andM06-HF333), an additional contribution from the Van
Voorhis and Scuseria functional is used334

Figure 11. Development of the Minnesota functional family.
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depending on the density gradient sσ and the kinetic energy
density τσ. At the same time, the correlation energy is expanded
with ingredients from the same work of Van Voorhis and
Scuseria,334 leading to a total of 32 parameters that have to be
fitted. In further developments, M08,335 M11,336,337 and
MN12338−340 mixing of RPBE exchange,341 range separation of
the Fock exchange, and a combined (nonseparable) exchange-
correlation series are successively introduced. Hundreds of
reference points are employed for the parameter training
containing atomization energies, ionization potentials, electron
affinities, proton affinities, barrier heights, noncovalent inter-
actions, transition metal ligand energies, alkyl bond dissociations,
isomeric reactions, excitation energies, bond lengths, and
vibrational frequencies. In the latest forms,338 both exchange
and correlation are expressed in a general Taylor expansion
generated by different powers of functions depending on the
density ρ, its dimensionless gradient s, and kinetic energy density
τ without physical constraints on the parameters cijk:

∫∑ ∑ ∑ ∑ ρ τ= ϵ
σ

σ σ σ σ
= =

−

=

− −⎡
⎣
⎢⎢

⎤
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(104)

The authors argue that the exchange functional does not need to
obey the spin-scaling relations and in this way additionally
accounts for correlation effects.
The Minnesota functionals have been shown to perform

excellently for thermochemistry and kinetics on large data-
bases.283,324,342 The success of the Minnesota functionals to
model noncovalent interactions is related to its gradient
derivatives. Specifically, the kinetic energy term is semilocally
dependent on the Kohn−Sham orbitals (rather than the
density).343,344 In this sense, all meta-GGAs are semilocal in
the orbitals, which is not necessarily translated into a locality in
the density. The Minnesota functionals use this orbital-
dependent nonlocality to empirically fit London dispersion
interactions into the density functional by choosing proper
training sets for the parameter fit. However, the accuracy for
noncovalent interactions is only of medium quality. While the
M06L and M06-2X functionals perform best for NCIs among
their functional family, the atom pairwise approaches are superior
without higher computational costs (see next section). This is
partially due to the lack of the long-range −C6/R

6 contribution,
and it has been shown that inclusion of an additional dispersion
correction (e.g., D3(0)) can improve this deficiency183,313 (some
examples are also shown below). Another problem for practical
applications is the strong grid dependence of most Minnesota
functionals and the slower convergence with respect to the one-
particle basis set expansion.345 This is especially pronounced in
geometries far from equilibrium as shown in several stud-
ies.255,346 A recent one on rare gas dimers demonstrated that
nearly all Minnesota functionals give unphysical dissociation
curves with none or multiple potential minima.347

A related meta-GGA functional was recently constructed by
Perdew and co-workers.348 The strongly constrained and
appropriately normed (SCAN) functional also relies on
expansions of the exchange-correlation functional:

∫∑ α= ϵ
σ

σ σ σE F srd ( , )x x x
SCAN

,
unif

(105)

The exchange enhancement factor Fx is much more flexible
compared to the original PBE version and is based on the density
gradient sσ and a dimensionless kinetic energy density

α =σ
τ τ

τ
−σ σ

σ

W

unif , which is related to the Weizsac̈ker kinetic energy

and scaled by the uniform electron gas limit. The latter variable
distinguishes between different bonding situations, for instance, a
covalent single bond (ασ = 0), a metallic bond (ασ ≈ 1), and a
weak vdW bond (ασ ≫ 1). Contrary to the approach of Truhlar
and co-workers, in the SCAN functional most parameters are
determined by fulfilling exact constraints, and only seven
remaining parameters are fitted empirically to reference energies.
Although a limited set of free parameters is exploited, the SCAN
functional seems to perform similarly to M06L for the S22 set
and also captures some portion of medium-range dispersion
interactions. Again, this should be significantly improvable by
adding a long-range dispersion correction. Because it is a
problematic issue in the related Minnesota functional family, the
grid and basis set dependence of the SCAN functional has yet to
be tested.

4.3.3. Dispersion-mimicking and dispersion-compen-
sating effects. Some approximations in quantum chemical
approaches can lead to attractive interatomic forces that
artificially mimic dispersion effects. However, all those
mentioned below share the unpleasant property that they are
due to some kind of inconsistency in the electronic structure
description or the way the calculations are typically conducted
and hence do not have the correct asymptotic distance
dependence. Solvation and entropy effects counteract the
dispersion energy, thus leading to a subtle balance between
these omnipresent physical forces, particularly relevant for
reactions in solution.198,349

Basis set superposition error. The most abundant among the
dispersion mimics is the attractive force arising from the basis set
superposition error (BSSE) between overlapping molecular
fragments. It is omnipresent in all MF approaches, which are
based on atom-centered basis set expansions. The BSSEmimic of
dispersion effects is most strongly pronounced for small
Gaussian double-ζ basis set expansions such as in the widely
used B3LYP/6-31G* approach, where this issue was analyzed in
detail.350 Although the error cancellation between the neglect of
dispersion correction and the BSSE may work in some cases, it is
not systematic (different dependence on the fragment
separation) and can lead to significant errors in interaction
energies, thermochemistry, and bond distances.351 Given that
simple schemes exist to systematically correct for both BSSE and
dispersion at negligible cost, relying on this type of error
cancellation is generally not justified and should be avoided.352

Range-separated exchange. Artificial attractive forces may
furthermore arise from the use of range-separated hybrid (RSH)
functionals. This effect was first noticed by Hirao and co-
workers235 and later confirmed in other studies.353,354 Hirao and
co-workers showed that a RSH of the BOP functional in
combination with a dispersion correction performed better for
van der Waals complexes compared to the respective GGA. In
the context of isodesmic reactions, Johnson et al.355 state that
“GGAs effectively overestimate the effect of repulsion between
the 1,3-carbons in n-alkanes. [...] The inclusion of dispersion,
long-range exact exchange, or MP2 correlation, each act to
reduce this bias, restoring the good agreement with reference
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data.” Apparently, the range separation of the exchange potential
leads to an inconsistent description of the Pauli exchange-
repulsion energy (cf. EEXR in eq 9). In any global hybrid
functional (including the two extrema ax = 0 and ax = 1; see eq 5),
the EEXR will have a destabilizing effect on the supramolecular
complex AB. In typical RSH functionals, an attractive force
between two fragments can arise due to the smaller (less-
repulsive) EEXR contribution from DFA exchange at short range
compared to the larger (more-repulsive) Fock exchange at long
range. This leads to minima in the NCI distance regime without
applying any dispersion correction.235,353 The magnitude of this
attractive interaction consequently depends on the extent and
shape of range separation as well as the underlying DFA. It
should be noted that, depending on the density functional, this
effect may be reversed and the RSH variant may become more
repulsive.235 In cases where the range separation leads to an
attractive force, one should be aware that it is not related to the
origin of dispersion forces (correlation effect), and consequently,
neither the asymptotic behavior nor the interaction strength is
described correctly.
Nevertheless, together with various dispersion-correcting

schemes, the flexibility of RSH functionals to tune the attractive
behavior in the medium-range has been exploited to obtain an
improved transition between the long-range (London dis-
persion) and short-range correlation regimes.147,235,356,357 An
extensive study has recently been conducted resulting in the
ωB97X-V functional (i.e., a RSH with VV10 correction).357 A
review on RSH functionals has been published recently.358

Subsystem DFT. Subsystem density functional theory (also
termed DFT-in-DFT embedding) has been developed as an
alternative to conventional DFT for large systems.359 Early works
on weakly bonded vdW systems with an approximate kinetic
energy functional for the subsystem coupling showed an
improved description compared to the plain KS-DFT treatment.
In this context, the PW91 functional has shown improved van der
Waals bonding distances and energies when applied in the
framework of Kohn−Sham DFT with constrained electron
density.360,361 However, similar to the two cases mentioned
above, the additional attraction arises from an unphysical and
unbalanced treatment of the intrasubsystem interaction
compared to the intersubsystem interaction. A recent study
analyzed this behavior in detail.362 It was shown that subsystem
DFT fortuitously reproduces the interaction energy at the
equilibrium distance reasonably close to the reference, while the
true minimum occurs at too short distances and is energetically
strongly overbound. Furthermore, the shape of the potential
energy surfaces strongly depends on the underlying DFA and the
choice of the kinetic energy approximation. Intrinsically more-
repulsive functionals can be corrected via additional dispersion
terms.362 Because of the overly attractive behavior, this is not
possible with reasonable accuracy for PW91. In our view, the
ideal subsystem DFT treatment should not aim at reproducing
reference energies of weakly bound complexes but rather should
stay as close as possible to the full KS result. In this way, one will
be able to describe larger systems and use the methodologies
presented here to correct for missing London dispersion
interactions in a physically sound manner.
Compensating effects. There are physical effects that, at least

partially, compensate the omnipresent, attractive intermolecular
dispersion interactions in nearly all cases, and the two most
important are mentioned here: solvation and entropy.198,349 As
an example we will take a typical supramolecular (intermolec-
ular) association reaction “host + guest→ complex”. The pincer

system 3a from the S12L benchmark set198 will be taken as an
example to show the various contributions that counteract the
dispersion energy. As in most of these chemical problems,
equilibrium situations are considered, and hence the Gibbs free
energy ΔG has to be computed (at 298 K under standard
conditions). Table 3 shows the data that are added up in a

dispersion-corrected DFT treatment including the continuum
model derived solvation free energy ΔGsolv as computed by
COSMO-RS363 for CH2Cl2 (for details, see ref 198).

According to these data, the strong gas-phase interaction is
totally dominated by the dispersion energy. The resulting
dispersion-corrected interaction energy of −24 kcal/mol is
quenched dominantly by entropy (one complex is formed out of
two molecules) and a solvation penalty of ∼5 kcal/mol (the
complex has a smaller solvent-accessible surface for vdW
interactions with the solvent than the separated fragments).
The values given above are typical for complexes of this size
(100−200 atoms) and common organic solvents.95 They show
that the counteracting attractive and repulsive effects are sizable
and of the same order of magnitude. Hence, an overall accurate
treatment for the resulting small free association energy of only a
few kcal/mol requires accurate calculations for all individual
contributions. Although such a basically nonempirical ansatz is
computationally nontrivial, specifically for the solvation term,
eventually not only a reasonable final value is computed but also
further chemical insight can be gained by the analysis of the
separate contributions.

Table 3. Contributions to Interaction (Free) Energies (kcal/
mol) for the Association of a Pincer Molecule with an
Unsaturated π-System To Form a Supramolecular Complex
(See Figure 12 for a Sketch of the Structure); The Term E→
GTRV Denotes the Gas-Phase Correction from Energy to Free
Energy (Solvent: CH2Cl2)

contribution energy

ΔEDFT(TPSS) 5.5 (unbound)
ΔED3

atm −29.5
ΔEDFT‑D3

atm −24.0
Δ(E→G) TRV 17.6
ΔGgas −6.4
Δ(Ggas→Gsolv) 5.4
∑ = ΔGcalc −1.0
ΔGexptl −2.3

Figure 12. Molecular structure of the pincer complex with 4-chloro-7-
nitro-benzofurazane (126 atoms, system 3a from the S12L benchmark
set).
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4.3.4. Dispersion in periodic systems. Our general
description of the various interactions in the previous paragraphs
was mostly based on a molecular chemistry picture. However,
modern materials and interfaces are usually modeled as crystals
with periodic boundary conditions. For electrostatic interactions,
the periodic picture introduces problems of diverging energy
contributions, which can be efficiently handled by modern
variants of the Ewald summation.364,365 As demonstrated above,
the leading term in the London dispersion interaction decays
with 1/R6, and thus a three-dimensionally integrated dispersion
contribution decays with 1/R3 (cf. Figure 13). For the D2 and TS
schemes, Ewald summations have been implemented in some
program packages (e.g., VASP265). Alternatively, the dispersion
energy can be evaluated in real space as a sum with certain cutoff
radii,

∑ ∑= −
| + |→∞ ∈

E
C

R T
lim

k A B

AB

T
disp
(6)

,

6
6

k (106)

where T runs over all translationally invariant vectors (multiples
of unit cell vectors) within the cutoff sphere k . Because of the
fast convergence, a real-space cutoff of ∼50 Å is generally
sufficient. The higher-order terms (both in the multipole and in
the many-body sense) decay even faster, and smaller real-space
cutoffs are then applicable. Especially for molecular crystals or
larger interfaces with only a few symmetry elements and large
unit cells, the reciprocal space scheme is no longer efficient and
the real space summation is usually preferred.

However, for semiempirical methods or classical force fields,

the summation of dispersion interactions can be a substantial part

of the computational costs. For these situations and for highly

symmetric crystals, it might be advantageous to sum up parts of

the interaction in reciprocal space. Using established integral

identities,366 the dispersion energy can be computed as
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where the interaction is separated via the parameter β into a
short-range regime evaluated in real space (first sum) and a long-
range regime evaluated in reciprocal space (second sum). The
last term removes the self-interaction terms arising for R = 0. The
reciprocal (Fourier) part is normalized by the unit cell volume V,
and the “switching functions” can be expressed via the
complementary error function,

π= − − +f x x x x x( )
1
3

[(1 2 ) exp( ) 2 erfc( )]6
2 2 3

(108)
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Modern implementations of the (particle mesh) Ewald
summation have a favorable N N( log( )) scaling with system

size N compared to the N( )2 scaling for real space
summation.365,367

Nearly all of the methods introduced above have been
implemented into standard quantum chemistry methods, which
can handle periodic boundary conditions with different basis set
schemes. Specifically, these are (projector-augmented) plane-
wave basis sets (VASP265 and QuantumEspresso267), local
Gaussian basis sets (CRYSTAL,368 Gaussian,369 TURBO-
MOLE,289 and Siesta268), Slater-type basis sets (ADF
BANDS370), and numerical basis sets (FHI-AIMS371), and also
combinations of Gaussian and plane-wave basis sets are in use
(CP2K372).

4.3.5. Dispersion-corrected semiempirical MO meth-
ods. Semiempirical molecular orbital (SE-MO) methods are
low-cost mean-field approaches that are approximations to either
the HF or the KS-DFT problem (for recent articles reviewing SE-
MO methods, see refs 373−375). Similarly, dispersion
interactions are not captured by SE-MO approaches, and thus,
they require dispersion corrections as well. Typically, SE-MO
methods employ minimal basis sets and approximations, e.g.,
neglect of diatomic differential overlap (NDDO), in the
evaluation of the costly two-electron integrals. For the latter,
empirical element-specific parameters are introduced that have
to be fitted to experimental or theoretical benchmarks. These
approximations lead to a significant reduction of the computa-
tional cost by up to 4 orders of magnitude compared to the DFT
or HF MF methods. In Figure 14, we highlight the different
approximations leading to the significant speed-up.
However, the simplifications lead to a worsened description of

the electron density compared to regular MF approaches with
large basis sets. For both reasons, combining SE-MO methods
with any kind of density-dependent dispersion correction is not
recommended. On the one hand, the quality of such dispersion
corrections could suffer from the approximate description of the
electron density by SE-MO approaches, and on the other hand,
the numerical integration typically necessary for density-
dependent dispersion corrections would become the rate-
limiting step and slow down the overall computation.

Figure 13. Exemplifying the real space summation of dispersion
interactions on the (001) projection of the CO2 crystal. Because the
leading interaction decays with 1/R6 and the surface of additional
contributions increases with the square of the distance R2, the integrated
interaction converges rapidly with 1/R3.
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Consequently, purely geometry-dependent semiclassical ap-
proaches (like D281 or D385) are the most natural choice. Both
correction schemes (including others82 that resemble D2) were
combined with fast SE-MOmethods in the past. The first step in
this direction was taken by Elstner and co-workers in their
seminal paper on dispersion-corrected density functional tight-
binding (DFTB).119 Different HF-based SE-MO approaches
have been combined with the D2 dispersion correction81 (or the
related scheme by Jurecǩa et al.82).152−156,376−378 More recently,
HF-based SE-MOmethods176,177,179,379 as well as DFTB178 were
combined with the more sophisticated D3 approach.85 As
expected, the proper inclusion of dispersion generally improves
the performance of SE-MO methods for noncovalent
interactions. However, the PM7378 method is mentioned here
as a counterexample of proper inclusion of dispersion. Here, the
dispersion energy is damped down and even truncated at long
range. While the performance of this method is satisfactory for
small systems (due to the fitting procedure on similar benchmark
sets), it breaks down completely for larger complexes.95,179

Therefore, proper treatment (i.e., correct in the long-range limit)
of dispersion is mandatory.
The accuracy of dispersion-corrected SE-MO methods is

highly dependent on the employed SE-MO approach. In
principle, the dispersion can be treated very accurately, and
some methods can reach average errors in binding energies that
are only a factor of 2 worse when compared with dispersion-
corrected GGA functionals.179 However, the employed integral
simplifications and the neglect of all many-center contributions
in most SE-MO methods often result in underestimated and
faster-decaying Pauli exchange-repulsion terms (cf. eq 9).
Because the balance between Pauli exchange repulsion and
dispersion is important for a good description of NCIs (cf. Figure
6), the intermolecular distances are often underestimated.178,179

A better description in this range can be achieved with the
minimal basis Hartree−Fock method including three corrections
(HF-3c).130 Here, the two-electron integrals are evaluated
exactly, thus improving the description of the Pauli exchange
repulsion. The errors in the covalent and noncovalent bonds due
to the underlying minimal basis HF are corrected by atom
pairwise corrections (including D3 dispersion). This method is
typically faster than DFT in larger basis sets (e.g., triple-ζ) but
more costly compared to the NDDO-based SE-MOmethods.179

4.4. Methodological perspective

Having introduced various methods to describe London
dispersion interactions, it seems important to put their practical
relevance into context. In Figure 15, the number of citations for

different dispersion corrections is depicted (only methods with
more than 100 citations in total are considered). The number of
citations is not intended as a measure of quality but rather serves
as an indicator for the popularity of a method in the scientific
community.
The semiclassical D281 and D385 approaches are the most

widely applied correction schemes, surpassed only by the
medium-range dispersion-inclusive Minnesota density func-
tionals from 2006.331,332 The reason why these three approaches
are most popular is likely due to, apart from their generally good
performance, the straightforward way in which they can be
applied. While the M06 class of functionals works in the same
way as any other MF approach, the density-independent D2 and
D3 approaches are easily implemented and are available in
combination with a large class of standard density functionals.
Furthermore, D2/D3 is efficient for geometry optimizations and,
in addition, provides more or less automatic insight into the
origin and spatial distribution of the dispersion energy. Some key
properties of the approaches presented above are listed in Table
4. Note that no comparative accuracy judgment is made at this
point (see next section). However, a wrong asymptotic limit or
missing higher-order terms can already indicate inconsistencies
from a purely theoretical point of view.
We try to judge the numerical complexity of the different

methods by comparison with a corresponding plain semilocal
functional treatment (e.g., PBE). In this regard, the nonlocal
density functionals of the vdW-DF family produce the largest
computational overhead, leading to significantly larger compu-
tation times.209,231 However, recent efforts in efficient
implementations make their usage in periodic systems
affordable,256 and a linear scaling implementation was also
reported by Gulans et al.257 By modeling the local response
function through a very simple kernel, a significant speed-up
could be achieved in the VV10 variant.89 If used nonself-

Figure 14. Classification of low-cost, minimal basis set based quantum
chemical methods according to their specific approximations.

Figure 15. Number of citations found for the key papers of different
dispersion corrections as obtained from the Web of Science.6 Whenever
the definition of a single seminal paper is not suitable, the summed
number of citations for several key articles is presented. The considered
articles are D2,81 D3,85,129 TS,86 MBD,87,136,196 XDM,22,83,84,210,211,216

LRD,229,230 dDsC,224,226 VV10,89,270,274 vdW-DF1,251,252,259 vdW-
DF2,88 M06,331,332 and DCACP.293
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consistently, VV10 calculations are only a few percent slower
than uncorrected treatments. The C6-based D2, D3, and TS
methods cause practically no additional computation time
compared to HF and semilocal DFT methods.81,85,86,380 An
efficient analytical derivative of the three-body interaction for the
D3 scheme was implemented recently.381 The diagonalization of
the dipole-coupling matrix in the MBD scheme is slightly more
expensive, especially if nuclear gradients are considered. The
computational cost of the exchange-hole integration to generate
the XDM dispersion coefficients is substantial, and the XDM
method is probably the most costly C6-based dispersion
correction (only surpassed by the related dDsC approach).22,213

Particularly for nuclear gradients, approximations to avoid self-
consistent treatments of XDM were presented.217,227 The one-
electron-based potentials are intrinsically inexpensive but can
slow down the SCF convergence with respect to the number of
SCF cycles.345,346

Because the nonlocal and the Minnesota-type density
functionals evaluate the dispersion energy solely from the
electron density, no element-specific parameters are introduced
and these methods are applicable to all elements in the periodic
table. All semiclassical methods, however, rely on element-
specific atomic data. In D3, the element-pair-specific parameters
are the precomputed dispersion coefficients,85 TS (and MBD)
uses element-specific, precomputed static polarizabilities and
homoatomic dispersion coefficients,86 and XDM employs
empirical static polarizabilities.210 While the limited availability
of element-specific parameters was the natural limitation of early
dispersion approaches (see section 3) and D2 was in fact one of
the first methods available for a large number of elements, the
modern dispersion-correction schemes cover major parts of the
periodic table and have basically no practical limitation. All the
semiclassical approaches rely on certain tabulated parameters
and hence include a certain amount of empiricism.While D3 uses
precalculated C6 coefficients for each element in different
coordination numbers (on average three reference points per
element), TS and MBD use precalculated C6 coefficients and
static polarizabilities of the free atom for each element (two
values per element) and XDM uses experimental static
polarizabilities of the free atom for each element (one parameter

per element). Additionally, all the semiclassical methods use
predefined cutoff radii in the short-range damping function
together with (one or two) global parameters to adjust the
damping to a certain mean-field method. Note that the
precalculated C6 coefficients in the D3 scheme are nonempiri-
cally computed by time-dependent DFT (TDDFT) but with an
empirically adjusted hybrid density functional (PBE38). DCP
approaches require specific parametrization for certain elements
in combination with a given basis set and density functional.
Consequently, their applicability is typically restricted to only a
few elements.
Nearly all of the presented methods are in some way, directly

or indirectly, based on the electron density. Only the D2 and D3
schemes depend solely on the molecular geometry. The direct
dependence on the density has the advantage of seamlessly
modeling all atoms in a system in their current electronic
structure (e.g., oxidation state), which is not possible in purely
geometry-dependent approaches. The quality of the density
depends on the underlying mean-field approach and may
deteriorate if intrinsic errors of the latter become apparent
(e.g., charge-delocalization error in semilocal density func-
tionals).382 Because of the use of a minimal basis set and the
integral approximations, this is in particular the case for
semiempirical methods. In such cases, the D3 scheme can be
ideally coupled with semiempirical Hamiltonians without
deteriorating the results.176,179,379 Very promising results are
obtained in combination with a tight-binding Hamiltonian,178

and zero differential overlap methods have also been successfully
combined with D2152−156 and D3.377,379,383 Due to the
semiclassical character, D3 can be used without modification in
a classical force field.180

The nonlocal density functionals and all C6-based schemes
describe the long-range interactions correctly by construction.
Only the one-electron based potentials cannot recover the
correct−C6/R

6 limit. The importance of higher multipoles in the
perturbing field and the inclusion of higher many-body
interactions in dispersion corrections is under a very active
debate. There seems to be evidence that the required order in the
multipole expansion depends crucially on the underlying
exchange-correlation functional.201 The Minnesota functional

Table 4. Overview of the Capabilities and Theoretical Properties of the Previously Introduced London Dispersion Correction
Schemes

model numerical complexitya ρ based limitb multipolesc many-bodyd elementse

nonlocal density based
vdW-DF high yes yes yes no all
VV10 medium yes yes yes no all
C6 based
D2 low no yes no no 54
D3 low nof yes yesg yesh 94
TS low yes yes no no 80
MBD medium yes yes no yesi 80
XDM medium yes yes yesj yesk 103
one-electron potentials
DCP medium yes no ? no fewl

Minnesota medium yes no ? no all
aNumerical complexity compared to underlying DFT calculation. bLong-range limit −C6/R

6. cHigher multipoles (l > 1), i.e., induced quadrupoles,
octupoles, etc. dHigher many-body terms (n > 2, i.e., three-body, four-body, etc.). eParameters for all elements with Z ≤ xx. Methods without
element-specific parameters are applicable to all elements (indicated by “all”). fInformation on chemical environment from fractional coordination
number. gDipole−quadupole contribution. hThree-body ATM term. iFull many-body summation of coupled dipoles. jDipole−quadupole,
quadupole−quadrupole, and dipole−octupole contributions. kThree-body ATM term is available but not used in typical applications lPotentials need
specific parametrization (typically H, B, C, N, and O).35,300,301
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family and the double-hybrid functionals384 in particular seem to
cover the medium-range correlation regime to a large degree, and
because the dispersion correction should be very long range in
character, these only require corrections for the leading order
dipole term. This is substantially different in intrinsically more
repulsive functionals like BLYP or revPBE. It has been reported
that some dispersion corrections perform better in combination
with these more repulsive functionals.139,260 There is also some
consensus that many-body dispersion contributions are
important for large and condensed systems. However, their
magnitude seems to depend on the specific dispersion model. In
the D3 and XDM models,134,172 the three-body contribution
typically amounts to <5% of the total dispersion energy, which
seems to agree with the analysis of WF expansions.385,386 On the
contrary, in the MBD scheme the many-body contribution is
substantially larger, partially due to the higher-order many-body
series, but probably also due to the conceptually different model
(coupled, anisotropic QHOs) employed.
In Figure 16, we sketch the different dispersion coefficients Ck

as arising from different many-body orders and increasing

number of terms in the multipole expansion. This reflects the
physical origin from the perturbative treatment described in
section 4.1. Note that spherically symmetric atoms are assumed,
no l = 0 contribution exists because of the vanishing transition
monopole moments, and a many-body order n smaller than the
sum of all angular momenta∑i li is required (lower triangle). The
distance dependence is given by

∝ −E
C
R

k
k (110)

∑= +
=

k l n2
i

n

i
1 (111)

i.e., following the Ck connecting line leads to a faster decay of the
interaction with R. Because MF methods (e.g., the semilocal
DFAs) represent an expansion in powers of the local density, the
interaction depends on the density overlap. This overlap decays
exponentially with the distance R, and the molecular or atomic
ionization potentials determine the corresponding exponent.
Therefore, it is reasonable to cover the remaining long-range
correlations up to a certain power in R via the dispersion
correction. In this sense, the D3 method covers consistently all

terms up to 1/R9, while in XDM (in its typically applied form)
the C9 contribution is missing. MBD covers all many-body
orders, but all higher multipoles (C8, C10, ...) are neglected. In
contrast to all other methodologies, MBD also includes a model
for dispersion-screening effects (type-B nonadditive effects as
described by Dobson).80 The older D2 and TS methods only
cover the leading order C6 term, which corresponds to a
consistent distance dependence following the discussion given
above. The Minnesota functionals and DCP methods do not
have the correct physical origin of dispersion interactions, and
hence an identification of the many-body and multipole order is
not appropriate. The vdW-DF methods yield only two-body
contributions; otherwise, the trace (spacial integration) has to be
constructed over multiple centers. While the underlying model
depends on the dipolar polarizability and approximations to the
local response, the true charge density is integrated, thus
representing the multipoles to all orders.
While the dispersion treatment by one-electron potentials is

purely empirical, the nonlocal density and the C6-based
dispersion schemes model the correct physical interaction. In
the latter schemes, an empirically adjusted damping function has
to interpolate between the long-range and the short-range
regime, similar to all atom pairwise schemes. A similar damping is
also used to couple VV10 to various different density functionals.
Although the vdW-DF functional form is typically kept fixed, the
respective semilocal exchange correlation functional is empiri-
cally adjusted in the later versions to ideally fit to the long-range
regime.
A typical approximation used in many dispersion correction

schemes is the spherical averaging of the dynamic polarizabilities,
i.e., the pairwise dispersion energy solely depends on the
interatomic distance (compare with eqs 21 and 22). While this is
exact for free atoms, a nonsymmetric environment can perturb
the atom and remove this symmetry. In first order, this
asymmetric dynamic polarizability leads to a C7 pairwise
dispersion coefficient, which was estimated by Geerlings and
co-workers for the atom pairwise schemes to contribute ∼5−
20% of the total dispersion energy.387 This could be reproduced
in the D3 framework by generating the C7 from the C6
coefficients by a local asymmetry measure.388 The s7 and s8
coefficients in eq 40 were optimized on the standard S66 NCI
reference database, yielding on average a contribution of ∼7%
from the asymmetry term. However, the total dispersion energy
is only very slightly modified, and hence no significant
improvement of the resulting binding energies is gained.
Apparently, this small contribution can be absorbed in the C8
contribution. Note that only a uniform C7/R

7 dependence is
tested and the true anisotropy has a directional dependence.
Incidentally, it is mentioned that an R7 dispersion energy term
has recently been added to the EFP method.389,390 The MBD
dispersion scheme includes the atomic asymmetry to some
extent via the dipolar coupling within the nonsymmetric
molecular environment, which is typically not considered in all
the other presented methods.87 Note that the discussed
anisotropy of the atoms in pairwise dispersion schemes is not
related to the overall dispersion anisotropy of a molecule, which
is approximately included by all methods (see ref 11 for a more
detailed discussion including numerical examples).
In the original paper of Casimir and Polder, the response of the

electric field was considered with a finite propagation of the
Coulomb interaction at the speed of light.60 If retardation (i.e.,
the electrons “move” while the photon “travels” between them)
is taken into account, a C7/R

7 distance dependence is recovered.

Figure 16.Dispersion coefficients as arising in the asymptotic limit from
different many-body orders and increasing number of terms in the
multipole expansion. The contributions covered by the D3, MBD, and
XDM methods are highlighted.
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In the methods presented here, all interactions occur
instantaneously and no retardation effects are included.
However, at typical chemical distances, this should be a valid
approximation because the retardation is only significant if the
fragment separation R is much larger than the wavelength of the
transmitting electromagnetic radiation.
A severe approximation may be the local partitioning of the

polarizability α(iω), which assumes a localized polarization
response, and is the basis of most methods discussed (except for
the Minnesota-type functionals). If this partitioning cannot be
applied as in delocalized systems (e.g., in bulk metals), type-C
nonadditivity effects play a major role and one should not expect
good results from dispersion-corrected MF methods. Note that
not only do the C6-based schemes rely on the local character of
the dynamic polarizability but also the vdW density functionals
are derived from a local approximation to the charge density
susceptibility.

5. TYPICAL APPLICATIONS AND BENCHMARKS

5.1. Exemplifying the distance regimes of the dispersion
energy

Dispersion is omnipresent in electronic systems (like gravitation
in systems with mass) and is always attractive (energy lowering).
Its natural, also omnipresent, antagonist is exchange repulsion

(EXR) due to the Pauli exclusion principle, and in nonpolar
systems, these two terms dominate the medium- and long-
distance regimes. However, their distance dependence is very
different (R−6 vs exponential in R), and hence different chemical
systems or the paths along a reaction coordinate are influenced
differently by the two terms. The situation is complicated by the
fact that the various MF methods (in particular the “zoo” of
DFAs) account for EXR and dispersion effects rather differently.
As already mentioned in section 2, the inherent short-/medium-
range “repulsiveness” of a MF method is an important
classification criterion. In this section, these connections are
initially discussed with the help of specific chemical examples, the
argon dimer potential (Figure 17), the reaction of ethene with
cyclopentadiene to yield norbornene (Figure 18), the potential
energy curves for the formation of the π−π stacked coronene
dimer (Figure 19), and the association of two bimolecular
frustrated Lewis pairs (FLPs, Figure 20). In the first chemical
reaction example, a vdW bound complex is transformed into a
covalently bonded species, i.e., intermolecular dispersion
changes to intramolecular dispersion (correlation) energy,
while in the case of the coronene dimer the whole distance
range of the vdW interaction in a large complex is considered.
The long-range regime, which is of particular importance for the
(nonconducting) condensed phase, can be described practically

Figure 17. Computed (aug-cc-pV5Z AO basis) potential energy curves for two interacting Ar atoms with and without dispersion correction in
comparison to an accurate reference.

Figure 18. Four selected points on the potential energy surface for the reaction of ethene with cyclopentadiene to yield norbornene (TPSS-D3/def2-
TZVP geometries). Uncorrected B3LYP/def2-QZVP and B3LYP-D3/def2-QZVP are compared to CCSD(T)/est CBS reference data. For the long-
distance vdW regime, the equilibrium center-of-mass distance (indicated by an arrow and values given in Å) in the reactant complex is increased by 2 Å.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.5b00533
Chem. Rev. XXXX, XXX, XXX−XXX

AE

http://dx.doi.org/10.1021/acs.chemrev.5b00533


exactly with pairwise interactions (see section 4.1). Note that,
although the chosen systems and tested density functionals are
typical representatives, one should be careful not to overgener-
alize these data. In particular, polar systems can be dominated by
electrostatic, induction, or charge-transfer interactions. For
consistency and because it is a well-tested method, D3 is used
as a representative and asymptotically correct dispersion
correction. Nevertheless, it should be noted that other
asymptotically correct and well-performing schemes (see Tables
4 and 9, respectively) could have been used for this purpose.
We introduced the argon dimer in section 2 as a prototypical

example, where most MF methods fail to describe the potential
energy surface (PES) even qualitatively correctly. Here, we show
the PES for HF, the B3LYP hybrid functional, and the PBE GGA
functional again and compare the results with the corresponding
dispersion-corrected ones (parts a and b of Figure 17,
respectively). We apply the D3 dispersion correction in the
latest Becke−Johnson damping scheme as described in section
4.1. All three D3-corrected MF methods yield PES in good

quantitative agreement with the reference. The C6
Ar−Ar coefficient

is the same in all cases, but even though the plain MF PES differ
significantly, the differences between the MF-D3 PES are tiny.
This is a rather general observation that the often large
differences between various density functional approximations
are “washed out” by dispersion corrections. The Becke−Johnson
damping function seems to be capable of smoothly interpolating
between the D3 and the MF contributions; particularly, the HF-
D3 and B3LYP-D3 potentials are nearly identical. The
dispersion-corrected version of the intrinsically more attractive
PBE functional overstabilizes the argon dimer around the
equilibrium structure. This highlights the empirical observation
that the semiclassical dispersion corrections can be ideally
combined with inherently more repulsive density function-
als,139,260 which seems to avoid correlation double-counting
effects.
In the example of a typical Diels−Alder reaction, uncorrected

B3LYP is compared with its D3(BJ)-corrected variant B3LYP-
D3 and to accurate CCSD(T)/est CBS reference data. Four
points along the reaction coordinate are shown: the equilibrium
vdW complex structure with a typical center-of-mass distance
between the fragments of ∼3.8 Å, the same complex geometry
but at an elongated distance of 5.8 Å as an example of the
asymptotic regime, the Diels−Alder transition state (DATS) at
∼2.5 Å where the new CC bonds are almost formed, and finally
the product state where typical covalent distances < 2 Å occur. As
will be discussed below in more detail for a vdW equilibrium
structure benchmark set (S22), dispersion-uncorrected over-
repulsive functionals like B3LYP yield unbound vdW complexes
around equilibrium distances. This is seen in Figure 18 from the
positive interaction energy (unfilled bar) while B3LYP-D3 agrees
well with the reference value of about −2.3 kcal/mol. This
furthermore holds for the vdW (long) structure with a still
significant interaction of about −0.3 kcal/mol while B3LYP is
essentially unbound (noninteracting). In this asymptotic region
the electron density overlap is tiny due to its exponential decay,
and hence, practically no interaction remains for a nonpolar
system with a dispersion-devoid MF method. Interestingly, the
over-repulsive behavior of B3LYP is also sizable in the much
tighter bound DATS and product states. The reaction barrier is
overestimated with uncorrected B3LYP by ∼6 kcal/mol, and
even the reaction exothermicity is underestimated by 5 kcal/mol.
These failures are almost perfectly cured by the D3 scheme
indicating that (a) this method relatively accurately accounts also
for medium-range correlation effects and (b) these effects are
practically absent in plain B3LYP but important for an accurate
description of standard thermochemistry. Similar observations
were made in the mid-2000s for even simpler hydrocarbon
isomerization reactions.391−394 As will be shown below in other
examples, the above-described poor property of B3LYP is typical
for many density functional approximations except those from
the Minnesota family that capture correlation/dispersion effects
at least for medium distances.28,332

Figure 19 shows results for the coronene dimer with
uncorrected PBE,148 TPSS,318 and M06-2X332 density func-
tionals in comparison to their D3-corrected counterparts and
two DLPNO-CCSD(T)/CBS*395 (i.e., DLPNO-CCSD(T)
with tight cutoff values and a newly developed approximate
CBS extrapolation scheme denoted CBS*) reference data points.
The graph clearly shows that plain PBE and TPSS yield

physically incorrect unbound vdW states and that the D3-
corrected versions perform well in the equilibrium as well as
asymptotic regions (the same holds true for, e.g., B3LYP). The

Figure 19. Potential energy curves for the π−π stacked coronene dimer
with dispersion-corrected and uncorrected density functionals in
comparison to DLPNO-CCSD(T)/CBS*395 reference points for the
equilibrium and one elongated structure (1.4 × Re). The example is
taken from the L7 benchmark set.44

Figure 20. Structures of the molecules involved in the association
reaction of B(C6F5)3 with either PMes3 or PtBut3 (color codes: white =
hydrogen, pink = boron, gray = carbon, green = fluorine, orange =
phosphorus).
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residual deviations from the reference for the equilibrium
interaction energy are 1−2 kcal/mol (5−10%), which represents
the typical small deviation for those kind of semilocal functionals.
Note that the estimated error of the reference DLPNO-
CCSD(T)/CBS* values is about ±0.5 kcal/mol, mainly due to
the remaining basis set incompleteness error, is quite significant
in this comparison. The M06-2X functional performs consid-
erably better than the standard functionals near the equilibrium
structure and underbinds by only 2.5 kcal/mol even without
further (long-range) dispersion corrections. This example shows
that the empirical adjustment of the large number of parameters
in theM06-2X functional (>30) to equilibrium data of small vdW
complexes seems to capture the correct physics. In this part of the
potential, the electron densities overlap significantly and are
sufficiently strongly deformed relative to those of the fragments.
However, the situation is different already at slightly larger
interfragment distances where M06-2X starts to underbind
systematically. Particularly, this holds true for the asymptotic
regime, which is already reached at a distance of ∼5 Å where the
M06-2X interaction has almost vanished. Although this can be
partially cured by adding the D3(0) correction, it is evident from
the DLPNO-CCSD(T) data that the combination of D3(BJ)
with purely repulsive functionals works better. This conclusion is
quite general and is related to the fact that electron-correlation
double-counting effects in the medium-range dispersion regime
are difficult to avoid with equilibrium-binding functionals of, for
example, theM06 type. This effect is also the reason why only the
zero-damping variant D3(0) could be coupled reasonably well
with M06-2X.129 Recent experience has shown that functionals
with intermediate repulsiveness and a coadjustment of the
semilocal functional part with the dispersion correction are most
effective to get accurately and robustly working MF methods351

(see also refs 139 and 357 for related functional developments).
In a very recent study,396 the association of two bimolecular

FLPs was investigated. In this example the mostly noncovalently
bound complex between the Lewis acid B(C6F5)3 and the Lewis
base (PMes3 or PtBut3) is chemically relevant because a specific
preorganization and molecular flexibility are required to activate
small molecules like H2

397 (see Figure 20). A selection of the
computed association energies (using the def2-QZVP398,399 AO
basis set) from ref 396 is presented in Table 5. According to
reference calculations at the DLPNO-CCSD(T)/CBS* level,395

the association energies of both FLPs are very similar. If
dispersion-exclusive methods like plain B3LYP or HF are used,
positive association energies (unbound complexes) are obtained.
The magnitude of these positive energies reflects the repulsive

character of the respective MF approach. Adding dispersion
corrections leads to very good agreement (close to or even within
chemical accuracy) with the reference values. The HF-D3
approach performs remarkably well in this particular case,
because the association is a purely noncovalent process
accompanied by only little changes within the covalent
frameworks. The same excellent agreement is observed for
B3LYP-D3. This shows again that, through the damping function
parameters, the D3(BJ) correction85,129 can be reasonably
applied with different MF approaches. The B3LYP-NL scheme
typically performs well also; however, in this particular case it
performs slightly worse than B3LYP-D3.
Comparison of the two systems reveals that the contribution

of dispersion is smaller in B(C6F5)3/PtBut3 than in B(C6F5)3/
PMes3, as plain B3LYP and HF already yield smaller association
energies for the former. In the larger PMes3 unit, a significant
contribution of the association energy results from long-range
dispersion interactions (>5 Å).396 This is indicated by the
performance of the M06-2X functional. Covering dispersion at
medium range only, it yields almost the correct association
energy for B(C6F5)3/PtBut3 (error of ∼2 kcal/mol), while its
deviation from the reference is much larger for B(C6F5)3/PMes3
(∼5 kcal/mol). Including long-range dispersion by means of the
D3(0) scheme significantly improves the results (see Table 5). In
the discussion of the potential energy curve for the coronene
dimer, the importance of the asymptotically correct treatment of
dispersion interactions has been emphasized (see above). Here,
we have given an additional example that the proper inclusion of
dispersion interactions (also at long range) is necessary to
accurately describe the thermochemistry even of moderately
sized molecules. For the additional consideration of solvation
effects and their partial compensation of dispersion corrections,
see ref 396 (cf. also section 4.3.3).

5.2. Peptide conformation potential

Our next example is the unfolding of the Ace-Ala-Gly-Ala-NMe
tetrapeptide from a folded, right-handed α-helix structure to the
unfolded β-strand. As starting structures for the folded and
unfolded conformation, we used the αR- and βa-geometries,
respectively, from ref 400. They were then optimized using the
recently proposed composite approach PBEh-3c351 as imple-
mented in the TURBOMOLE suite of programs (version
7.0).289 Five intermediate structures were generated and
optimized with constrained Ace-NMe distance. Single-point
calculat ions were performed on these geometries
(B3LYP53,54,58,161,162/def2-QZVP398,399) and two dispersion-
correction schemes were applied: the semiclassical D3(BJ)85,129

scheme (see Figure 9) and the density-dependent, nonlocal
VV10 correction (NL)89,274 nonself-consistently in a post-SCF
manner. The relative energies with respect to the folded
conformer are plotted in Figure 21 as a function of the
separation between the terminal carbon atoms and compared to
high-level reference data at the DLPNO-CCSD(T)/CBS* level
(estimated error: ± 0.5 kcal/mol).395 Further comparisons are
made with the B3LYP-DCP/6-31+G(2p,2d)35 composite
scheme (shortly denoted as DCP in Figure 21) as well as the
Minnesota hybrid functional M06-2X.332

According to our calculations, the folded α-helix conformer is
more stable than the unfolded β-strand structure (differences
from the relative stability reported in refs 400 and 401 may arise
from the constrained dihedral angles used therein). Apparently,
dispersion stabilizes the compact, folded structure. Without
correction, the B3LYP functional leads to an incorrect relative

Table 5. Association Energies (kcal/mol) of B(C6F5)3/PMes3
and B(C6F5)3/PtBut3; If Not NotedOtherwise, the Values Are
Taken from Ref 396 and Were Obtained with the def2-QZVP
Basis Set

method B(C6F5)3/PMes3 B(C6F5)3/PtBut3

B3LYP 5.5 2.8
B3LYP-D3 −10.5 −11.2
B3LYP-NL −11.7 −12.7
M06-2Xa −5.3 −8.4
M06-2X-D3(0)a −9.0 −11.4
HF 7.7 4.2
HF-D3 −10.2 −11.3
referencea,b −10.3 −10.8

aThis work. bFrom DLPNO-CCSD(T)/CBS* calculation.395
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stability of the folded compared to the unfolded conformer. The
plain B3LYP functional includes Pauli exchange repulsion, which

is also stronger in the folded than in the unfolded conformation,
thus destabilizing the former. The stabilizing effect due to
hydrogen bonds, which are present in the folded conformer and
mostly captured by B3LYP, is not sufficient for an accurate
description of the relative stability. Including dispersion in a
semiclassical way (B3LYP-D3) or using the nonlocal VV10
correction (B3LYP-NL) stabilizes the folded conformer,
resulting in excellent agreement with the reference data
(discrepancy less than 0.15 kcal/mol). Furthermore, it is
observed that, for plain B3LYP, the PES is very bumpy, which
is not the case for the reference method (DLPNO-CCSD(T)/
CBS*). B3LYP-D3 and B3LYP-NL show excellent mutual
agreement, yielding a comparably smooth PES close to the
reference. Only one geometry (point 5) is somewhat under-
stabilized for both schemes, and thus, it seems to be caused by a
functional specific artifact (B3LYP-DCP/6-31+G(2p,2d) shows
a similar kink here). Overall the long-range dispersion correction,
the density functional (at short range), and even the interplay at
medium range (strongly dependent on the damping function)
work remarkably well in both schemes. Comparison with the
plain B3LYP data reveals that additive dispersion corrections
(following eq 10) and their attachment to the functional provide
the necessary physics to describe such an unfolding process in a
quantitatively correct manner.
The B3LYP-DCP/6-31+G(2p,2d) and M06-2X follow

conceptually different approaches (see section 4.3). Both are
capable of predicting qualitatively the correct relative stability for
the folded and unfolded conformers (points 1 and 7 in Figure
21). However, in both approaches the relative energy of the
unfolded conformer is too low, particularly in the DCP scheme.
This is likely due to the lack of long-range dispersion part (see
Table 4), which seems to contribute more strongly to the

Figure 21. Potential energy curve for unfolding of the tetrapeptide Ace-
Ala-Gly-Ala-NMe. For the B3LYP, B3LYP-D3, B3LYP-NL, and M06-
2X calculations, the def2-QZVP basis set was used. DCP represents
B3LYP-DCP/6-31+G(2p,2d).35 The reference energies are obtained at
the DLPNO-CCSD(T)/CBS*395 level. The geometries of points 1
(folded), 3, 5, and 7 (unfolded) are depicted as well.

Figure 22. Lattice energy of the benzene crystal based on constrained volume optimizations (TPSS-D3 level) with single-point evaluations of various
dispersion-correctedMFmethods. For each method, the cross shows the position of the energy minimum and the arrow indicates the effect of the added
dispersion correction. The reference lattice energy refers to a recent CCSD(T) estimate.419
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stabilization of the folded conformer. The comparably similar
structure 2 is described extremely well by both approaches. For
B3LYP-DCP/6-31+G(2p,2d) all subsequent geometries are
systematically calculated to be too stable. M06-2X draws a
different picture. While the unfolded and similar structures (7
and 6, respectively) are too stable, the intermediate structures 3
and 4 are computed to be too high in energy.
In conclusion, for a correct description of this unfolding

process (and this may hold for polypeptides in general), a proper
description of dispersion at long range is mandatory. Good
agreement with the reference is obtained for both the B3LYP-D3
and the B3LYP-NL approaches, which produce almost identical
results. M06-2X performs well, too, with a slight underestimation
of the unfolded conformer likely due to the missing long-range
dispersion. B3LYP-DCP/6-31+G(2p,2d) yields qualitatively
correct relative energies but quantitatively underestimates the
long-range dispersion contribution.

5.3. Benzene crystal

To shed light on the long-range behavior of dispersion-corrected
MF methods and, in particular, their influence in more dense
(condensed) systems, the analysis of a nonpolar, and therefore
dispersion energy-dominated, organic crystal is presented. A
sufficiently fast and, at the same time, reasonably accurate
electronic structure method would be beneficial for the growing
field of organic crystal structure prediction.402−404 Crystalline
benzene is one of the simplest organic molecular crystals with
aromatic π-stacking. It has various energetically close poly-
morphs405,406 and serves as the prototypical example to test and
judge electronic structure methods based on wave function ex-
pansions,407−411 dispersion-corrected DFT,173,174,262,381,412−414

and even SE-MO methods.178,179,415

In Figure 22, we show a potential energy surface (PES) of the
benzene crystal. It corresponds to constrained volume
optimizations around the equilibrium geometry calculated at
the TPSS-D3 level. For the various dispersion-corrected MF
methods, single-point energies in a converged projector-
augmented wave (PAW)416,417 basis set are evaluated on this
PES as calculated with the VASP program.264−266 The
experimental sublimation enthalpy and geometry have been
back-corrected for zero-point and thermal effects as described in
refs 174, 351, and 418 with the corresponding error estimates.
The estimated experimental lattice energy is replaced here by a
recent CCSD(T) based estimate419 as theoretical reference
value.
In parts a and b, semiclassical C6-based and in part c one-

electron-based and nonlocal dispersion schemes are shown. The
geometric changes of the crystal are depicted in part d. From
Figure 22d, one can see that the noncovalent stacking distance is
mainly influenced by the volume constraint PES scan, while the
covalent bond distances do not change significantly, as expected
for a vdW crystal. The plain density functionals PBE148 and
BLYP161,162 cannot describe the binding in a qualitatively correct
manner. While PBE shows a very shallow minimum, the BLYP
PES is purely repulsive. The binding energy is reasonably good
with PBE-D2, but the unit cell volume is significantly
underestimated. This probably originates from inaccurate C6
coefficients in the old D2 method. The carbon C6 coefficients are
actually closer to the carbon C6 within ethyne (compare with
Figure 8) and are too high by ∼20% for the benzene crystal. The
PBE-D3 potentials are substantially better and agree very well
with the reference. For the benzene crystal, both damping
variants seem to be appropriate and yield similar results. The

three-body contribution in the ATM approximation has only a
small effect and decreases the binding by ∼7%. The PES
calculated with PBE-TS has a significantly underestimated
minimum (too attractive interaction). However, the minimum
geometry is reproduced well at the PBE-TS level. All well-
established semiclassical dispersion corrections, namely, D3,85

MBD,87 and XDM,22,210,211,216 are very close to each other and
agree with the reference within its estimated uncertainty (cf.
Figure 22a; the errors are smaller than 1 kcal/mol and 1.3%,
respectively, for the lattice energy and the unit cell volume).
Both the empirical one-electron potentials (M06L331,332 and

DFT-DCACP293) and the nonlocal vdW density functional
(vdW-DF2251) provide less-accurate potentials. M06L is too
repulsive, which can be partially cured with the D3(0) scheme.
However, the geometry is too dense and the overall improve-
ment is only minor. BLYP-DCACP and vdW-DF2 yield a
reasonable lattice energy close to the reference, but the
equilibrium volume is significantly larger as shown in Figure
22b. These results highlight again the importance of a consistent
treatment of dispersion interactions in all distance regimes. In
condensed systems, the long-range part is especially significant
and must not be neglected.
An important point in these comparisons has to be

emphasized as a number of studies compare calculated lattice
energies or equilibrium geometries directly with the measured
observables.203,412,420 Especially for organic crystals of small
molecules, the impact of zero-point vibrational (ZPV) and
thermal contributions to both the sublimation enthalpy and the
minimum geometry (on the free energy surface) can be
substantial.418,421,422 For instance, the computed hydrogen
cyanide mass density of 1.06 g/cm3 and lattice energy of 10.3
kcal/mol (at TPSS-D3/est CBS level) may bemisinterpreted as a
failure of the dispersion-corrected density functional. However,
the errors of 9% and 21% for the mass density and sublimation
enthalpy, respectively, diminish to values of only 1% and 5%
when ZPV and thermal effects are properly accounted for.423

5.4. Standard benchmark sets for noncovalent interactions

Up to this point, we described individual examples specifically
selected for showing representative trends and behaviors. To
support the above conclusions, we summarize the performance
of different methodologies for well-established benchmark sets.
We focus on interaction energy benchmarks for purely
noncovalently bound systems, because for these standard test
sets sufficient data exist for most methods in the literature.
Recently, some effort has been devoted to the investigation of
dispersion effects on geometric properties including covalent
bonds, rotational constants of medium-sized molecules, non-
cova lent bond dis tances , and crysta l mass den-
sities.24,324,351,424,425

Concerning the energy benchmarks, two different strategies
for the compilation of reference data exist. For sufficiently small
systems (S22275,426,427 and S66276), high-level wave function
based reference calculations are feasible and typically the
CCSD(T) level extrapolated to the CBS limit is applied. For
larger systems (S12L,198 S30L,95 X23,174,262 and ICE10418),
which are the true target of MF methods, one has to rely on
experimental data, which requires proper back-correction of, e.g.,
thermal, vibrational zero-point, and solvation effects.198 For
systems of medium size, e.g., for parts of the S12L set, (local)
correlated wave function and quantumMonte Carlo methods are
nowadays feasible.175 The use of theoretical references is
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preferred because no experimental errors occur and geometric,
thermal, and various condensed-phase effects are absent.
To provide comprehensible benchmark data, we first

summarize the test sets and give the corresponding reference
values used in the later comparison. We show results for three
typical, standard interaction energy benchmark sets. The first is
the very well-known and widely used S22 set of Hobza and co-
workers,275 comprising small- to medium-sized, mostly organic
complexes in their equilibrium structure summarized in Table 6.

This set covers hydrogen-bonded as well as typical vdW
complexes, and it has become the defacto standard in the field

of theoretical noncovalent interaction calculations. Note that the
S22 reference values have been revised twice,426,427 and we use
the latest published values here.
However, because S22 does not include large systems with >50

atoms, it is not appropriate for testing the performance of
methods in the asymptotic, large interatomic distance regime
(although systems apart from the S22 equilibrium distances were
already analyzed in its original publication).275 Furthermore,
charged as well as multiple interacting fragments giving rise to
various many-body effects are absent in S22. Such systems are
contained in the S12L benchmark set of supramolecular
complexes,198 which is used here to demonstrate the perform-
ance of methods in realistic applications. The S12L reference is
based on back-corrected experimental (free) energies.95 The
reliability of these estimated gas-phase interaction energies has
been confirmed independently by diffusion Monte Carlo175 and
DFT-SAPT calculations.428 Moreover, they compare well with
DLPNO-CCSD(T)/CBS*395 values (to be published else-
where).
The third set (X23) of (mostly) organic molecular

crystals174,262 can be considered as a periodic extension of the
S22 where the asymptotic parts of the noncovalent interaction,
specifically the dispersion component, may dominate. The
benchmark set X23 was compiled by Otero-de-la-Roza and
Johnson262 and further refined by Reilly and Tkatchenko.174

Experimental sublimation enthalpies are corrected for zero-point
and thermal effects yielding electronic lattice energies that allow
convenient benchmarking. The latter study also estimates the
impact of anharmonic contributions on the sublimation energy,
and we use these values for benchmarking.174

For all three test sets, the same consistent strategy of
comparing the data from the MF methods with reference
interaction energies was applied: (i) single-point interaction
energies for the given reference structures were computed or
taken from the literature, (ii) single-particle basis sets were tried
to converge to the basis set limit to rule out incompleteness
effects as much as possible, and (iii) composite methods or
separate dispersion corrections were applied in the standard form
as defined in the original publications. Because many dispersion-
correction schemes can be coupled with various MF methods,
there exists a plethora of variants that could be tested. To provide
a reasonable but still comprehensible picture, we decided to

Table 6. Reference Energies of the S22 Test Set for
Noncovalent Interactions As Introduced by Hobza and Co-
workers275 with Refined CCSD(T)/CBS(est) Reference
Values (ΔE) by Sherrill and Co-workers427

no.a name symmetryb ΔE ± 1%c

1 ammonia dimer C2h −3.13
2 water dimer Cs −4.99
3 formic acid dimer C2h −18.75
4 formamide dimer C2h −16.06
5 uracil dimer C2h −20.64
6 2-pyridoxine·2-aminopyridine C1 −16.93
7 adenine·thymine C1 −16.66
8 methane dimer D3d −0.53
9 ethene dimer D2d −1.47
10 benzene·methane C3 −1.45
11 benzene dimer C2h −2.65
12 pyracine dimer Cs −4.26
13 uracil dimer C2 −9.81
14 indole·benzene C1 −4.52
15 adenine·thymine (stack) C1 −11.73
16 ethene·ethine C2v −1.50
17 benzene·water Cs −3.28
18 benzene·ammonia Cs −2.31
19 benzene·cyanide Cs −4.54
20 benzene dimer C2v −2.72
21 indole·benzene (T-shape) C1 −5.63
22 phenol dimer C1 −7.10

aRunning number according to ref 275. bSymmetry of complex.
cBinding energy in kcal/mol as given in ref 427 with estimated error.

Table 7. Reference Energies of the S12L Test Set for Supramolecular Host−Guest Complexes As Introduced by Grimme198 with
Refined Back-Corrected Experimental Reference Values from Ref 95

no.a no.b name charge solventc temperatured ΔGe ΔE ± 5%f

1 2a TCNA@tweezer 0 CHCl3 298 −4.2 −29.0
2 2b DCB@tweezer 0 CHCl3 298 −1.4 −20.8
3 3a 3c@pincer 0 CH2Cl2 298 −2.3 −23.5
4 3b 3d@pincer 0 CH2Cl2 298 −1.3 −20.3
9 4a C60@catcher 0 toluene 293 −5.3 −28.4
10 4b C70@catcher 0 toluene 293 −5.1 −29.8
17 5a GLH@mcycle 0 CHCl3 298 −8.3 −33.4
18 5b BQ@mcycle 0 CHCl3 298 −3.3 −23.3
27 6a BuNBH4@CB6 +1 formic acid/H2O 298 −6.9 −82.2
28 6b PrNH4@CB6 +1 formic acid/H2O 298 −5.7 −80.1

7a FECP@CB7 +2 H2O 298 −21.1 −132.7g

21 7b ADOH@CB7 0 H2O 298 −14.1 −24.2

aRunning number according to ref 95. bRunning number according to ref 198. cSolvent of experimental measurement. dTemperature of ΔG
measurement in K. eExperimental ΔG in kcal/mol. fBack-corrected ΔE in kcal/mol with estimated error. gReference value identical to procedure in
ref 95.
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Table 8. Reference Energies of the X23 Test Set for Molecular Crystals As Introduced by Otero-de-la-Roza and Johnson262 and
Refined by Reilly and Tkatchenko;174 We Use the Back-Corrected References from Ref 174 with Individual Replacements As
Indicated Below

no.a no.b name space group Z (unit)c temperatured ΔHe ΔE ± 5%f

1 1 cyclohexanedione P21 2 233 19.39 21.18
2 2 acetic acid Pna21 4 40 16.24 17.40
3 3 adamantane P4̅21c 2 188 13.97 16.59

4 4 ammonia P213 4 160 7.12 8.89
5 5 anthracene P21a 2 94 23.46 26.94
6 6 benzene Pbca 4 218 10.78 13.22g

7 7 CO2 Pa3̅ 4 150 5.88 6.50

8 8 cyanamide Pbca 8 108 18.05 19.05
9 9 cytosine P212121 4 298 37.05h 38.57i

10 10 ethylcarbanate P21̅ 2 168 18.81 20.63

11 11 formamide P21/n 4 90 17.15 18.93
12 hexamine I4̅3m 1 100 18.12 20.60

13 12 imidazole P21/c 4 123 19.45 20.75
14 13 naphthalene P21/a 2 10 17.03 19.53
15 14 oxalic acid α Pcba 4 298 22.39 23.01
16 15 oxalic acid α P21/c 2 298 22.38 22.97
17 16 pyrazine Pmnn 2 184 13.45 14.65
18 17 pyrazole P21cn 8 108 17.29 18.57
19 succinic acid P21/c 2 100 29.42 31.14
20 18 triazine R3̅c 6 298 13.30 14.75

21 19 trioxane R3c 6 103 13.44 15.87
22 20 uracil P21/a 4 298 30.87 32.43
23 21 urea P4̅21/m 2 298 22.42 24.50

aRunning number according to ref 174. bRunning number according to ref 262. cNumber of molecules in the primitive unit cell. dTemperature of X-
ray measurement in K. eExperimental ΔH at T0 = 298 K in kcal/mol. fBack-corrected zero-point exclusive ΔE at T0 = 0 K in kcal/mol with estimated
error. gValue replaced by CCSD(T) estimate from ref 419. hValue replaced by current NIST entry registry number 71-30-7.429 iValue adjusted to
match updated ΔH.

Table 9. Mean Deviations (MDs), Mean Absolute Deviations (MADs), andMaximumAbsolute Deviations (MAXs) in kcal/mol as
Well asMean Absolute Relative Deviations (MARD%) in% of Interaction Energies Calculated with SelectedDispersion-Corrected
MF Methods for the Benchmark Sets S22,275 S12L,198 and X23;174,262 Missing Data Are Indicated with Hyphens

S22a S12Lb X23p

MD MAD MAX MARD% MD MAD MAX MARD% MD MAD MAX MARD%

PBE −2.5c 2.6 10.1 55.5 −26.5d 26.5 46.1 82.0 −11.6e 11.6 28.4 59.5
semiclassical methods + PBE
PBE-D2 0.5c,r 0.6 1.6 13.1 1.2d 1.5 3.6 5.2 1.5e 1.8 6.4 9.5
PBE-D3o 0.1c,r 0.5 1.7 9.9 −2.3d 2.3 9.1 5.9 −0.5f 1.2 3.8 6.4
PBE-TS 0.3r 0.3 1.0 10.8 6.5d,r 6.5 15.1 20.9 2.3g 2.4 8.5 12.6
PBE-MBD 0.0r 0.5 1.9 9.4 −0.4h,r 1.0 3.2 3.4 1.2g 1.5 3.5 7.9
PBE-XDM −0.3r 0.5o 2.7 9.2 −0.9I 1.5 3.2 5.1 −0.9r,e 1.1 3.9 5.9
semiclassical methods + hybrid
PBE0-MBD 0.1r 0.6 1.8 8.6 1.3h,r 1.7 4.2 4.7 0.3g 0.9 2.2 5.6
PBE0-XDM −0.1r 0.5 2.1 7.1 1.0I 1.5 3.8 5.3 − − − −
PBE0-D3o 0.1c,r 0.5 1.9 8.7 − − − − −0.4j 1.1 3.1 6.2
PW6B95-D3o −0.2c,r 0.3 1.2 5.8 0.0k 1.6 3.3 4.8 − − − −
nonlocal density based
PBE-NL 0.2r 0.5 1.8 8.3 2.9d 3.1 7.3 10.2 − − − −
vdW-DF2 −0.4m 0.5 2.8 6.4 − − − − 1.3r,e 1.5 3.5 8.5
effective one-electron potentials
B3LYP-DCP −0.2n 0.3 0.8 5.4 − − − − 5.1r,l 5.1 9.6 26.4
M06L −0.8c 0.8 1.7 18.1 −1.2d 2.2 5.6 7.7 −1.9q,r 2.3 5.5 11.3
M06-2X −0.2c 0.4 1.5 7.4 −2.3d 2.5 7.5 7.4 − − − −

aReference data from Table 6. bReference data from Table 7. cData from ref 283. dData from ref 172. eData from ref 262; oxalic acid α and β
replaced by ref 412. fData from ref 173. gData from ref 174. hData from ref 175. IData from ref 201. jData from ref 381. kData from ref 198. lData
from ref 352; the number of systems was reduced to 16. mData from ref 88. nData from ref 430. oIncluding the three-body dispersion energy
(ATM). pReference data from Table 8. qEnergies computed on PBE-D3 structures. rThis work; individual data for XDM and TS/MBD related
methods kindly provided by A. Otero-de-la-Roza, E. Johnson, and A. Tkatchenko.
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concentrate on the widely used and well-known PBE functional
as the underlying MF scheme for the semiclassical as well as the
VV10 dispersion corrections. For comparison, we also show
results for four hybrid functional variants (PBE0-MBD, PBE0-
XDM, PBE0-D3, and PW6B95-D3), two Minnesota functionals
(M06L and M06-2X), and B3LYP-DCP.
Note that, because of the larger molecular sizes in S12L (up to

∼160 atoms), the average (gas-phase) interaction energy is much
larger than that for S22 (44 kcal/mol vs 7.3 kcal/mol; the average
interaction energy per molecule in the unit cell for the X23 set is
20.2 kcal/mol). Therefore, in addition to the absolute error
measures mean deviation (MD), mean absolute deviation
(MAD), and maximum absolute deviation (MAX), we also
provide the mean absolute relative deviation (MARD%) from
the reference values in Table 9. We use the individual interaction
energies as given in the indicated references of Table 9 and
recompute the statistical measures according to the reference
values from Tables 6, 7, and 8. Missing data were either
recomputed in this work or indicated as a footnote.
Because extensive experience exists for the very basic S22 set,

we will discuss these data first. Note that most of the methods
considered here were empirically developed or explicitly fitted to
S22 or similar systems, and hence a good performance for the
S22 is a more or less necessary but not fully sufficient condition
for general applicability. For this benchmark set, MAD values <
0.5 kcal/mol can be considered as satisfactory while values of
0.2−0.3 kcal/mol (i.e., approaching the accuracy of the reference
data) indicate excellent performance. As can be seen from the
data in the first row of Table 9, dispersion-uncorrected PBE
performs rather poorly with an MAD of 2.6 kcal/mol and an
MARD% of >50% for S22. The MD value is negative and has
about the same absolute value as the MAD, which indicates that
almost all interaction energies are underestimated (underbound
complexes). Note that PBE belongs to the class of functionals
with intermediate repulsiveness, and even worse results (i.e.,
more strongly underbound complexes) are obtained for
uncorrected BLYP, B3LYP, or TPSS (MAD values are 4.8, 3.8,
and 3.5 kcal/mol, respectively11). All semiclassical schemes
provide good corrections leading toMAD andMARD% values of
about 0.5 kcal/mol and 10%, respectively. The nonlocal methods
PBE-NL and vdW-DF2 perform similarly, and this also holds for
D3-corrected standard functionals (MAD values of 0.29−0.46
kcal/mol; see, e.g., ref 11). The tendency of vdW-DF1 to
overestimate dispersion interactions at equilibrium distances
diminishes in the revised version, vdW-DF2.233 For comparison,
the MAD of vdW-DF1 on the S22 set is 1.44 kcal/mol with
revPBE,287 1.03 kcal/mol with revised PW86,287 and 0.23 kcal/
mol with a specifically adapted version of the B88 functional
denoted opt-B88,259 and rPW86-VV09 yields an MAD of 1.20
kcal/mol287 with LDA correlation contributing significantly to
the binding. In the class of hybrids, PW6B95-D3 yields excellent
results, while among the one-electron potential-based methods,
B3LYP-DCP stands out. From this analysis and additional results
for the related S66 set313 (includingmany other functionals), one
can conclude that various, rather differently constructed
dispersion corrections to MF methods provide similarly accurate
results for small- and medium-sized noncovalent complexes. The
dependence of the underlying functional is roughly the same (or
even larger) as that of the various dispersion-correction schemes.
The typical error is 5−10% of the interaction energy. To put this
into perspective, we mention the MAD on the S22 set obtained
for the computationally cheapest post-HF WFT method, MP2,

which is 0.78 kcal/mol431 (at the estimated CBS), i.e., worse than
for dispersion-corrected MF methods.
The situation for the S12L set of large supramolecular

complexes is similar to the S22, but the spread of the
performance of the methods is generally larger. As noted
above, the MAD values are much larger (e.g., 25.8 kcal/mol for
plain PBE) while relative deviations are similar to those in the
S22 (e.g., 5−10% for well-performing methods that have MAD
values of 2−3 kcal/mol for this set). A notable outlier is PBE-TS
with an MARD% of 21.9%, but this is cured at the MBD level. Its
poor performance has been attributed to the strong contribution
of many-body dispersion in supramolecular complexes (or more
dense materials in general).175 However, recently it was shown
that, within the PBE-XDM model, higher multipole terms (C8
and C10) seem to be more important compared to high-order
many-body contributions.201 It was furthermore concluded that
PBE clearly represents the best MF method for this set of
complexes in combination with XDM, which is different from
conclusions for S22/S66 where many MF methods perform
similarly. The observation that the asymptotic part of the
dispersion treatment is more relevant for the larger S12L
complexes than for the S22 is not very obvious from inspection of
the data. While the MARD% of PBE increases from 55.5% to
81.7% in S12L, the MD for the London dispersion-devoid M06L
functional is similar for S22 and S12L, and for M06-2X the
corresponding increase of the MD from−0.2 to−1.7 kcal/mol is
only moderate.
The results for the X23 solid-state, lattice-energy benchmark

set are in between those of S22 and S12L and lead to similar
conclusions. The atom pairwise schemes (except PBE-TS)
perform very well with almost no systematic deviations, small
MAD values of 1−2 kcal/mol, and MARD% of 6−8%. PBE0-
MBD is within the chemical accuracy of 1 kcal/mol on the X23
set. While PBE0-D3 has a similar (slightly higher) error, the
currently best method is the dispersion-corrected screened
hybrid HSE06-D3(ATM) with MAD of 0.8 kcal/mol (corre-
sponding to MARD of 4.6%). This highlights again that, in
addition to the dispersion-correction scheme, the underlying
semilocal density functional is of importance. We want to stress
at this point that the interpretation of benchmark data has to be
done carefully as averaged trends are discussed. For instance, the
CO2 crystal seems to be a special case, where all considered
semiclassical models compute an underestimated lattice energy.
However, a benchmark set of 10 ice polymorphs (ICE10: from
low- to high-density polymorphs)418 confirms some general
trends where PBE-TS and PBE-D3 overestimate the lattice
energy. This can be partially attributed to the PBE functional, but
other combinations (BLYP-D3 and PBE0-D3) show similar
trends.
The empirically proven consistency of the theoretical

description of the interactions between small molecules, e.g., in
dimers and in complex interaction networks like the condensed
phase, is a very important result. To what extent the lowest
achieved MAD in this work for the X23 set of ∼1 kcal/mol for
absolute lattice energies transfers to a corresponding accuracy for
relative energy differences of crystal polymorphs has to be
studied in more detail. A few studies analyzed the polymorphism
of glycine or aspirin,432−435 but this analysis has to be done more
rigorously for an extended set of data. This is especially important
for the in silico crystal structure prediction.402−404 In the 2015
crystal structure prediction blind test, a variety of dispersion-
corrected density functionals have been applied, and especially
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the newest developments lead to a significant improvement of
calculated polymorph landscapes.436

Furthermore, for the pairs of corrections D2 vs D3 as well as
TS vsMBD, one notices a significantly improved accuracy for the
theoretically better founded method (i.e., D3 and MBD), which
is encouraging. Both hybrid functional approaches (PBE0-D3
and PBE0-MBD) lead to further improvement in accuracy
(probably due to better EXR/es/ind noncovalent interaction
contributions), while vdW-DF2 is on the same level as the PBE/
semiclassical methods. M06L and B3LYP-DCP perform
significantly worse by all statistical measures. Particularly, this
holds for B3LYP-DCP, which yields quite good results for the
small-molecule set S22. Tentatively, this inconsistency can be
attributed to the very empirical character of the dispersion
correction, which is less transferable to different systems
compared to asymptotically correct methods.

6. SUMMARY AND OUTLOOK
In the almost 40 years since their first use, corrections for the
London (long-range) dispersion energy in mean-field methods
like Hartree−Fock or approximate Kohn−ShamDFT have come
of age and are now routinely applied in chemistry and physics.
Concomitantly to their theoretical and numerical development,
we notice an increasing awareness and general acceptance of
London dispersion interactions as an important and fruitful
general chemical concept. In particular, this involves the new idea
of intramolecular dispersion effects and their impact in
thermochemistry and for structural problems. The basic reason
why it took so long to establish, for example, the widely used
DFT-D methods is that the dispersion energy, as a mostly
additive quantity, shows up chemically only for relatively large
systems (>20−30 atoms). Molecules of this size were simply
inaccessible in the early days of quantum chemistry, while
nowadays DFT calculations are routinely done on 100−200
atoms and in periodic boundaries even for the condensed phase.
In this work, the theoretical foundations of the corrections as

well as various approaches have been reviewed. A comprehensive
picture of the accuracy of the most widely used methods in
applications to typical chemical problems has also been
presented. The most prominent correction schemes can be
classified into three groups: (i) nonlocal, density-based func-
tionals, (ii) semiclassical C6 based, and (iii) one-electron effective
potentials. The properties and pros and cons of these methods
were discussed. There seems to be consensus that asymptotic
correctness (right −1/R−6 decay behavior with interfragment
distance) is a key property for large systems and hence that many
methods in group (i) and (ii) yield equally high accuracy for
various noncovalent interaction motifs. Furthermore, methods
from group (iii) (e.g., highly parametrized density functionals)
can be combined with group (i)/(ii) schemes to obtain
systematically high accuracy for long- as well as short-range
correlation effects.
These modern dispersion-corrected mean-field (DCMF)

methods are meanwhile widely applied in the chemical and
physical community to describe various standard properties like
energies or structures. However, there are less well investigated
issues like phonon dispersion, elastic and dielectric constants, or
excited states that depend on long-range dispersion interactions
as well, and this seems to be a promising field that still needs
further exploration. A related, but still not completely solved
problem that was only briefly discussed in this Review is
solvation. Dispersion effects are omnipresent and also occur for
anymolecule when it is solvated as inmost chemical applications.

Molecular dispersion effects are then partly quenched, i.e.,
intramolecular contributions are replaced by intermolecular ones
with the solvent. An accurate account of these effects requires
sophisticated solvation models with the same high accuracy as
DCMF, which is difficult to obtain at present.
Despite the versatility and general reliability of modern

DCMF, intense research efforts are devoted to advance even
further the current frontiers of (i) generality/robustness, (ii)
many-body effects, and (iii) accuracy. The situation regarding the
last point is relatively clear: often the accuracy of the
approximated long-range dispersion energy (typical relative
error of 5%) is on an absolute scale higher than that of the
underlying mean-field method (i.e., a typical semilocal(hybrid)
functional like B3LYP). Hence, further development of accurate
short-range exchange-correlation functionals seems warranted
before turning back to the dispersion problem. This, however,
mostly holds for saturated, electronically localized large gap
systems where dispersion is inherently a local phenomenon with
small many-body contributions. The latter become more
significant in metals or for quasi-metallic situations, and here
the errors are larger (but sometimes still acceptable). The
question remains open whether the separation of dynamical and
static electron correlation is still valid in this case or if DCMF
theory is applicable at all. Higher many-body contributions in the
nonlocal density functionals via an Axilrod−Teller−Muto-type
triple spatial integral is another potential development area in
this context.
The competitors to DCMF methods are, of course, correlated

wave function based approaches like the coupled-cluster “gold
standard” CCSD(T), its various local approximations (wave
function truncations), and quantum Monte Carlo methods.
While these methods are fundamentally more accurate and
general, they are still hampered in practice by the slow
convergence with the basis set size, related large basis set
superposition errors, the huge computational effort involved, and
their (technical) inability to efficiently provide the very
important nuclear gradients. What is said here about CCSD(T)
and related WFTs also partially applies to a number of modern
DFT-based methods that are able to directly capture dispersion
interactions seamlessly and that have not been described in this
review: RPA,29 ab initio DFT,437 SAPT using DFT monomer
descriptions,31 double-hybrid functionals,384 or range-separated
functionals with a long-range correlation contribution from wave
function methods.438 All these methods are often less empirical
than dispersion-corrected DFT methods. They may also be
generally more applicable and resolve other shortcomings of
standard DFT like the self-interaction error or static correlation
problems. However, the fact that the correlation functional of
these methods depends also on virtual orbitals results in an
increased computational cost that severely limits their applic-
ability. Hence, it is clear that, in the foreseeable future, DCMFs
will continue to hold their ground, particularly for structure
optimization or molecular dynamics treatments. In any case, the
most promising way seems to be a combination of DCMF
structures with accurate WFT methods in single-point energy
mode or WFT-generated reference data to check the DCMF
results. Regarding this “third” combined DCMF/WFT way, the
future for an accurate electronic structure theory for large or
condensed systems is bright.
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Density Functional Theory Approach to Noncovalent Interactions via
Monomer Polarization and Pauli Blockade. Phys. Rev. Lett. 2010, 104,
163001.
(33)Helgaker, T.; Jørgensen, P.; Olsen, J.Molecular Electronic-Structure
Theory; J. Wiley: New York, 2000.
(34) Kruse, H.; Grimme, S. A geometrical correction for the inter- and
intra-molecular basis set superposition error in Hartree-Fock and
density functional theory calculations for large systems. J. Chem. Phys.
2012, 136, 154101.
(35) DiLabio, G. A.; Johnson, E. R.; Otero-de-la Roza, A. Performance
of conventional and dispersion-corrected density-functional theory
methods for hydrogen bonding interaction energies. Phys. Chem. Chem.
Phys. 2013, 15, 12821−12828.
(36) Maurer, S. A.; Lambrecht, D. S.; Kussmann, J.; Ochsenfeld, C.
Efficient distance-including integral screening in linear-scaling Møller-
Plesset perturbation theory. J. Chem. Phys. 2013, 138, 014101.
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(99) Peŕez-Jorda,́ J. M.; Becke, A. D. A density-functional study of van
der Waals forces: rare gas diatomics. Chem. Phys. Lett. 1995, 233, 134−
137.
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(190) Bucǩo, T.; Lebeg̀ue, S.; Hafner, J.; Ángyań, J. G. Improved
Density Dependent Correction for the Description of London
Dispersion Forces. J. Chem. Theory Comput. 2013, 9, 4293−4299.
(191) Bultinck, P.; Van Alsenoy, C.; Ayers, P. W.; Carbo-́Dorca, R.
Critical analysis and extension of the Hirshfeld atoms in molecules. J.
Chem. Phys. 2007, 126, 144111.
(192) Ferri, N.; DiStasio, R. A.; Ambrosetti, A.; Car, R.; Tkatchenko, A.
Electronic Properties of Molecules and Surfaces with a Self-Consistent
Interatomic van der Waals Density Functional. Phys. Rev. Lett. 2015,
114, 176802.
(193) Tang, K. T.; Karplus, M. Pade-́Approximant Calculation of the
Nonretarded van der Waals Coefficients for Two and Three Helium
Atoms. Phys. Rev. 1968, 171, 70−74.
(194) Silvestrelli, P. L.; Ambrosetti, A. Including screening in van der
Waals corrected density functional theory calculations: The case of
atoms and small molecules physisorbed on graphene. J. Chem. Phys.
2014, 140, 124107.
(195) Donchev, A. G. Many-body effects of dispersion interaction. J.
Chem. Phys. 2006, 125, 074713.
(196) Ambrosetti, A.; Reilly, A. M.; DiStasio, R. A.; Tkatchenko, A.
Long-range correlation energy calculated from coupled atomic response
functions. J. Chem. Phys. 2014, 140, 18A508.
(197) Langreth, D. C.; Perdew, J. P. Exchange-correlation energy of a
metallic surface: Wave-vector analysis. Phys. Rev. B 1977, 15, 2884−
2901.
(198) Grimme, S. Supramolecular binding thermodynamics by
dispersion corrected density functional theory. Chem. - Eur. J. 2012,
18, 9955−9964.
(199) Scuseria, G. E.; Henderson, T. M.; Sorensen, D. C. The ground
state correlation energy of the random phase approximation from a ring
coupled cluster doubles approach. J. Chem. Phys. 2008, 129, 231101.
(200) Scuseria, G. E.; Henderson, T. M.; Bulik, I. W. Particle-particle
and quasiparticle random phase approximations: Connections to
coupled cluster theory. J. Chem. Phys. 2013, 139, 104113.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.5b00533
Chem. Rev. XXXX, XXX, XXX−XXX

AR

http://dx.doi.org/10.1021/acs.chemrev.5b00533


(201) Otero-de-la Roza, A.; Johnson, E. R. Predicting energetics of
supramolecular systems using the XDM dispersion model. J. Chem.
Theory Comput. 2015, 11, 4033−4040.
(202) Blood-Forsythe, M. A.; Markovich, T.; DiStasio, R. A.; Car, R.;
Aspuru-Guzik, A. Analytical nuclear gradients for the range-separated
many-body dispersion model of noncovalent interactions. Chem. Sci.
2016, 7, 1712−1728.
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(228) Breḿond, E.; Golubev, N.; Steinmann, S. N.; Corminboeuf, C.
How important is self-consistency for the dDsC density dependent
dispersion correction? J. Chem. Phys. 2014, 140, 18A516.
(229) Sato, T.; Nakai, H. Density functional method including weak
interactions: Dispersion coefficients based on the local response
approximation. J. Chem. Phys. 2009, 131, 224104.
(230) Sato, T.; Nakai, H. Local Response Dispersion Method. II.
Generalized Multicenter Interactions. J. Chem. Phys. 2010, 133, 194101.
(231) Dobson, J. F.; Dinte, B. P. Constraint Satisfaction in Local and
Gradient Susceptibility Approximations: Application to a van der Waals
Density Functional. Phys. Rev. Lett. 1996, 76, 1780−1783.
(232) Becke, A. D. A multicenter numerical integration scheme for
polyatomic molecules. J. Chem. Phys. 1988, 88, 2547.
(233) Vydrov, O. A.; Van Voorhis, T. Improving the accuracy of the
nonlocal van der Waals density functional with minimal empiricism. J.
Chem. Phys. 2009, 130, 104105.
(234) Giese, T. J.; Audette, V.M.; York, D.M. J. Chem. Phys. 2003, 119,
2618−2622.
(235) Kamiya, M.; Tsuneda, T.; Hirao, K. A density functional study of
van der Waals interactions. J. Chem. Phys. 2002, 117, 6010−6015.
(236) Tsuneda, T.; Suzumura, T.; Hirao, K. A new one-parameter
progressive Colle-Salvetti-type correlation functional. J. Chem. Phys.
1999, 110, 10664−10678.
(237) Kar, R.; Song, J.-W.; Sato, T.; Hirao, K. Long-range corrected
density functionals combined with local response dispersion: A
promising method for weak interactions. J. Comput. Chem. 2013, 34,
2353−2359.
(238) Alves de Lima, N. Van der Waals density functional from
multipole dispersion interactions. J. Chem. Phys. 2010, 132, 014110.
(239) Lundqvist, B. I.; Andersson, Y.; Shao, H.; Chan, S.; Langreth, D.
Density functional theory including Van Der Waals forces. Int. J.
Quantum Chem. 1995, 56, 247−255.
(240) Langreth, D.; Lundqvist, B. I.; Chakarova-Kac̈k, S. D.; Cooper,
V.; Dion, M.; Hyldgaard, P.; Kelkkanen, A.; Kleis, J.; Kong, L.; Li, S.;
et al. A density functional for sparse matter. J. Phys.: Condens. Matter
2009, 21, 084203.
(241) Berland, K.; Cooper, V. R.; Lee, K.; Schröder, E.; Thonhauser,
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D. Optimization of Effective Atom Centered Potentials for London
Dispersion Forces in Density Functional Theory. Phys. Rev. Lett. 2004,
93, 153004.
(294) von Lilienfeld, O. A.; Tavernelli, I.; Rothlisberger, U.; Sebastiani,
D. Performance of optimized atom-centered potentials for weakly
bonded systems using density functional theory. Phys. Rev. B: Condens.
Matter Mater. Phys. 2005, 71, 195119.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.5b00533
Chem. Rev. XXXX, XXX, XXX−XXX

AT

http://dx.doi.org/10.1021/acs.chemrev.5b00533


(295) Tapavicza, E.; Lin, I.-C.; von Lilienfeld, O. A.; Tavernelli, I.;
Coutinho-Neto, M. D.; Rothlisberger, U. Weakly Bonded Complexes of
Aliphatic and Aromatic Carbon Compounds Described with Dispersion
Corrected Density Functional Theory. J. Chem. Theory Comput. 2007, 3,
1673−1679.
(296) Lin, I.-C.; von Lilienfeld, O. A.; Coutinho-Neto, M. D.;
Tavernelli, I.; Rothlisberger, U. Predicting Noncovalent Interactions
between Aromatic Biomolecules with London-Dispersion-Corrected
DFT. J. Phys. Chem. B 2007, 111, 14346−14354.
(297) Arey, J. S.; Aeberhard, P. C.; Lin, I.-C.; Rothlisberger, U.
Hydrogen Bonding Described Using Dispersion-Corrected Density
Functional Theory. J. Phys. Chem. B 2009, 113, 4726−4732.
(298) Tkatchenko, A.; von Lilienfeld, O. A. Adsorption of Ar on
graphite using London dispersion forces corrected Kohn-Sham density
functional theory. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73,
153406.
(299) Sun, Y. Y.; Kim, Y.-H.; Lee, K.; Zhang, S. B. Accurate and
efficient calculation of van der Waals interactions within density
functional theory by local atomic potential approach. J. Chem. Phys.
2008, 129, 154102.
(300) Mackie, I. D.; DiLabio, G. A. Accurate dispersion interactions
from standard density-functional theory methods with small basis sets.
Phys. Chem. Chem. Phys. 2010, 12, 6092−8.
(301) Torres, E.; DiLabio, G. A. A (Nearly) Universally Applicable
Method for Modeling Noncovalent Interactions Using B3LYP. J. Phys.
Chem. Lett. 2012, 3, 1738−1744.
(302) DiLabio, G. A.; Koleini, M.; Torres, E. Extension of the B3LYP-
dispersion-correcting potential approach to the accurate treatment of
both inter- and intra-molecular interactions. Theor. Chem. Acc. 2013,
132, 1389.
(303) van Santen, J. A.; DiLabio, G. A. Dispersion Corrections
Improve the Accuracy of Both Noncovalent and Covalent Interactions
Energies Predicted by a Density-Functional Theory Approximation. J.
Phys. Chem. A 2015, 119, 6703−6713.
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K.-L. Ab initio determination of the crystalline benzene lattice energy to
sub-kilojoule/mol accuracy. Science 2014, 345, 640−643.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.5b00533
Chem. Rev. XXXX, XXX, XXX−XXX

AW

http://dx.doi.org/10.1021/acs.chemrev.5b00533


(420) Sorescu, D. C.; Byrd, E. F. C.; Rice, B.M.; Jordan, K. D. Assessing
the Performances of Dispersion-Corrected Density Functional Methods
for Predicting the Crystallographic Properties of High Nitrogen
Energetic Salts. J. Chem. Theory Comput. 2014, 10, 4982−4994.
(421) Erba, A.; Maul, J.; Civalleri, B. Thermal properties of molecular
crystals through dispersion-corrected quasi-harmonic ab initio calcu-
lations: the case of urea. Chem. Commun. 2016, 52, 1820−1823.
(422) Heit, Y. N.; Nanda, K. D.; Beran, G. J. O. Predicting finite-
temperature properties of crystalline carbon dioxide from first principles
with quantitative accuracy. Chem. Sci. 2016, 7, 246−255.
(423) The optimizations at the TPSS-D3 level and ZPVE and thermal
correction at the DFTB3-D3 level have been conducted in the group of
S. Grimme and compared to the ICSD entry 76418 and NIST entry 74-
90-8.
(424) Witte, J.; Goldey, M.; Neaton, J. B.; Head-Gordon, M. Beyond
Energies: Geometries of Nonbonded Molecular Complexes as Metrics
for Assessing Electronic Structure Approaches. J. Chem. Theory Comput.
2015, 11, 1481−1492.
(425) Burow, A. M.; Bates, J. E.; Furche, F.; Eshuis, H. Analytical First-
Order Molecular Properties and Forces within the Adiabatic
Connection Random Phase Approximation. J. Chem. Theory Comput.
2014, 10, 180−194.
(426) Takatani, T.; Hohenstein, E. G.; Malagoli, M.; Marshall, M. S.;
Sherrill, C. D. Basis set consistent revision of the S22 test set of
noncovalent interaction energies. J. Chem. Phys. 2010, 132, 144104.
(427)Marshall, M. S.; Burns, L. A.; Sherrill, C. D. Basis set convergence
of the coupled-cluster correction, δMP2

CCSD(T): Best practices for
benchmarking non-covalent interactions and the attendant revision of
the S22, NBC10, HBC6, and HSG databases. J. Chem. Phys. 2011, 135,
194102.
(428) Heßelmann, A.; Korona, T. Intermolecular symmetry-adapted
perturbation theory study of large organic complexes. J. Chem. Phys.
2014, 141, 094107.
(429) Burkinshaw, P. M.; Mortimer, C. T. Enthalpies of sublimation of
transition metal complexes. J. Chem. Soc., Dalton Trans. 1984, 75−77.
(430) Goerigk, L. How Do DFT-DCP, DFT-NL, and DFT-D3
Compare for the Description of London-Dispersion Effects in
Conformers and General Thermochemistry? J. Chem. Theory Comput.
2014, 10, 968−980.
(431) Antony, J.; Grimme, S. Is Spin-Component Scaled Second-
Order Møller-Plesset Perturbation Theory an Appropriate Method for
the Study of Noncovalent Interactions in Molecules? J. Phys. Chem. A
2007, 111, 4862−4868.
(432) Wen, S.; Beran, G. J. O. Accidental Degeneracy in Crystalline
Aspirin: New Insights from High-Level ab Initio Calculations. Cryst.
Growth Des. 2012, 12, 2169−2172.
(433) Marom, N.; DiStasio, R. A.; Atalla, V.; Levchenko, S.; Reilly, A.
M.; Chelikowsky, J. R.; Leiserowitz, L.; Tkatchenko, A. Many-Body
Dispersion Interactions in Molecular Crystal Polymorphism. Angew.
Chem., Int. Ed. 2013, 52, 6629−6632.
(434) Reilly, A. M.; Tkatchenko, A. Role of Dispersion Interactions in
the Polymorphism and Entropic Stabilization of the Aspirin Crystal.
Phys. Rev. Lett. 2014, 113, 055701.
(435) Beran, G.; Wen, S.; Nanda, K.; Huang, Y.; Heit, Y. Accurate and
Robust Molecular Crystal Modeling Using Fragment-Based Electronic
Structure Methods. Top. Curr. Chem. 2013, 345, 59−93.
(436) See CCDC press release: https://www.ccdc.cam.ac.uk/News/
List/post-43/ (Nov 2, 2015).
(437) Schweigert, I. V.; Lotrich, V. F.; Bartlett, R. J.Ab initio correlation
functionals from second-order perturbation theory. J. Chem. Phys. 2006,
125, 104108.
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