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We analyze the energy landscape of the sixth crystal structure prediction blind

test targets with various first principles and semi-empirical quantum chemical

methodologies. A new benchmark set of 59 crystal structures (termed POLY59)

for testing quantum chemical methods based on the blind test target crystals is

presented. We focus on different means to include London dispersion

interactions within the density functional theory (DFT) framework. We show

the impact of pairwise dispersion corrections like the semi-empirical D2 scheme,

the Tkatchenko–Scheffler (TS) method, and the density-dependent dispersion

correction dDsC. Recent methodological progress includes higher-order

contributions in both the many-body and multipole expansions. We use the

D3 correction with Axilrod–Teller–Muto type three-body contribution, the TS

based many-body dispersion (MBD), and the nonlocal van der Waals density

functional (vdW-DF2). The density functionals with D3 and MBD correction

provide an energy ranking of the blind test polymorphs in excellent agreement

with the experimentally found structures. As a computationally less demanding

method, we test our recently presented minimal basis Hartree–Fock method

(HF-3c) and a density functional tight-binding Hamiltonian (DFTB). Consid-

ering the speed-up of three to four orders of magnitudes, the energy ranking

provided by the low-cost methods is very reasonable. We compare the computed

geometries with the corresponding X-ray data where TPSS-D3 performs best.

The importance of zero-point vibrational energy and thermal effects on crystal

densities is highlighted.

1. Introduction

The polymorphism of molecular crystals is important in

various areas of chemistry and physics with possible applica-

tions for pharmaceutical compounds, pigments, explosives and

metal–organic framework materials (Price, 2014; Mooij et al.,

2000). There are many examples of well known generic drugs

such as aspirin and paracetamol with multiple polymorphs

(Buṽar et al., 2015). In order to release a new drug, pharma-

ceutical companies have to screen the polymorph landscape.

Those experimental screenings are rather expensive and

cannot guarantee to cover the complete polymorph space.

Simulation techniques can help and guide experimentalists by

supplying them with computed crystal energy landscapes. This

crystal structure prediction (CSP) task is sketched in Fig. 1.

The most stable crystal structures shall be predicted from

knowledge of their molecular composition (Lewis structure).

The computed (possibly free) energy landscape can then be

used to identify the measured structures and to suggest

plausible alternative polymorphs.

The Cambridge Structural Database organizes CSP blind

challenges every few years to test and trigger methodological
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progress (Lommerse et al., 2000; Motherwell et al., 2002; Day

et al., 2005, 2009; Bardwell et al., 2011). In 2015 the sixth blind

test of organic crystal structure prediction methods took place

following the same general spirit (Reilly et al., 2016). In

contrast to previous blind tests, each group could submit two

lists of 100 structures in order to obtain a better picture of the

computed energy landscapes. Furthermore, the molecular

targets were more complicated, including a hydrated salt and

some rather flexible and large molecules. In this regard the

targets are close to relevant ‘real life’ applications. More

details on the general blind test procedure and discussion of

the different systems and methodological approaches can be

found in the main report (Reilly et al., 2016).

Avariety of methods for generating, optimizing and ranking

possible polymorph candidates were applied. Since an

increasing number of density functional approximations

(DFAs) were used in the final energy evaluation, a critical

analysis of their performance is mandatory. A number of

studies benchmark DFAs for their ability to calculate lattice

energies (Otero-de-la-Roza & Johnson, 2012; Reilly &

Tkatchenko, 2013; Carter & Rohl, 2014; Moellmann &

Grimme, 2014; Brandenburg & Grimme, 2014b; Brandenburg

et al., 2015). To what extent the lowest achieved mean absolute

deviation (MAD) in these works of � 4 kJ mol�1 for absolute

lattice energies transfers to a corresponding accuracy for

relative energy differences of crystal polymorphs has to be

studied in more detail. Early investigations of typical organic

crystal structure prediction blind test targets analyzed the

balance between intra- and intermolecular interactions

(Karamertzanis et al., 2008). A few studies used more recent

method developments to analyze the polymorphism of glycine

or aspirin (Wen & Beran, 2012; Marom et al., 2013; Reilly &

Tkatchenko, 2014; Beran et al., 2014), but this analysis has to

be done more rigorously for an extended set of data. A

comprehensive overview of the previously investigated poly-

morph stabilities is given in a recent review article (Beran,

2016).

Here, we use the generated crystal energy landscapes from

the sixth blind test to compile a benchmark set of relative

crystal stabilities. Because we are testing the ability of

methods to compute relative crystal energies that should

transfer to polymorph stabilities, this set will be dubbed

POLY59. The set consists of all nine experimentally realised

structures, which are complemented with the ten energetically

lowest computed structures per target molecule (from our

blind test submission). On this POLY59 set, several electronic

structure methods including density functional tight-binding

(DFTB3-D3; Brandenburg & Grimme, 2014a), minimal basis

set Hartree-Fock (HF-3c; Sure & Grimme, 2013) and disper-

sion-corrected DFAs are evaluated. The main focus is on

methods that include the London dispersion interaction within

the density functional theory (DFT) framework. As the semi-

classical dispersion corrections are most prominent, we

compare several schemes that compute only the leading order

contribution, i.e. C6 only (Grimme, 2006; Tkatchenko &

Scheffler, 2009; Steinmann et al., 2009) with modern variants

that include higher-order terms in both the multipole and the

many-body sense (Grimme et al., 2010; Tkatchenko et al., 2012;

Lee et al., 2010). The accuracy of a method is judged by the

ranking of the experimentally observed polymorph, which is

expected to be the energetically lowest structure. This

assumption is actually the main limitation of this study. On the

one hand, a low-energy polymorph may exist that is experi-

mentally not accessible due to high energy barriers. On the

other hand, finite temperature contributions may be important

that are not included in our rankings shown below. We try to

estimate the methodological effects and give an explicit route

to improve this in future calculations (x4.3).
We give a short overview of the applied electronic

structure methods in x2, describe the compilation of the

benchmark set in x3, and discuss the method performance

in x4. While the discussion focuses on the energy ranking

(x4.2), we will also present and discuss the equilibrium

structures of the two most successful methods, namely

TPSS-D3 and PBE-MBD (x4.1). In addition, the discussion

includes an analysis of zero-point vibrational energy (ZPVE)

and thermal contributions to both the energies and geome-

tries.
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Figure 1
An exemplary crystal structure prediction (CSP) task is sketched with the blind test structures as target molecules. Solely knowing the Lewis structure
CSP has to sample the polymorph space of the target molecule, calculate the corresponding structures and relative energies (possibly including thermal
effects), and result in a realistic landscape of possible structures. In combination with experiment, the measured polymorphs can be identified and
possible alternative structures can be proposed.
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2. Methodology

2.1. Dispersion-corrected mean-field methods

Effective mean-field electronic structure methods are an

irreplaceable tool in computational chemistry and solid-state

physics. The most widely applied are density functional

approximations (DFAs), but grid-free Hartree–Fock (HF) can

have advantages too (Parr & Yang, 1989; Stone, 1997). As

most prominent DFA, we apply the Perdew–Burke–Enzerhof

(PBE) generalized gradient approximated exchange and

correlation functionals (Perdew et al., 1996) and the Tao–

Perdew–Staroverov–Scuseria (TPSS) meta-GGA functional

(Tao et al., 2003). The DFAs are normally expanded in prop-

erly converged single-particle basis sets, and for periodic

systems the projector-augmented plane wave (PAW) method

of Blöchl and Kresse is very efficient (Blöchl, 1994; Kresse &

Joubert, 1999). Recently, a minimal basis set Hartree–Fock

method (expanded in Gaussian-type orbitals with basis set

corrections) HF-3c has been developed that has a speedup of

approximately one to two orders of magnitudes compared

with converged DFA computations (Sure & Grimme, 2013).

For further speedup of two orders of magnitudes, the minimal

basis DFA energy expression can be expanded in charge

density fluctuations, resulting in the density functional tight-

binding (DFTB) approximation (Aradi et al., 2007; Elstner,

2007).

All the above methods are not capable of describing

London dispersion interactions (also known as attractive van

der Waals forces). For an accurate description of organic

crystals, accounting for these interactions is mandatory as

recognized extensively in the last decade. For reviews or

overviews on the ‘dispersion problem in DFT’, see Burns et al.

(2011), Klimeš & Michaelides (2012) and Grimme (2011).

Correction schemes to include the missing London dispersion

have been developed, two recent review articles describe their

different construction principles (Grimme et al., 2016; Woods

et al., 2016).

The computation of the electronic lattice energy of a crystal

can be decomposed into the electronic mean field (MF) and

the dispersion part

Etot ¼ EMF þ Edisp: ð1Þ
The leading order fluctuating-dipole–fluctuating-dipole

contribution to the dispersion energy between two fragments

A and B can be expressed via the Casimir–Polder relation

EAB
disp ¼ � CAB

6

R6
AB

;

CAB
6 ¼ 3

�

Z1

0

d!�Aði!Þ�Bði!Þ: ð2Þ

The typical 1=R6
AB dependence on the distance RAB is recov-

ered and the corresponding C6 coefficients can be computed

by the dynamical polarizabilities �A=B (Casimir & Polder,

1948). Dispersion corrections that use an atomic partitioning

of the polarizabilities are nowadays classified as semi-classical

schemes. Several dispersion corrections only compute this

leading order term and mainly differ in the way the C6 coef-

ficients are estimated. We consider the DFT-D2 scheme

(Grimme, 2006), the Tkatchenko–Scheffler TS correction

(Tkatchenko & Scheffler, 2009), and the density dependent

dDsC method (Steinmann et al., 2009). While D2 uses an

empirical C6 estimate, the TS dispersion coefficients are based

on atomic reference values that are scaled with relative

Hirshfeld volumes, and in dDsC the local exchange dipole is

integrated and related to the C6.

Modern variants compute higher-order terms, namely

higher pairwise contributions (dipole–quadrupole, dipole–

octupole, quadrupole–quadrupole etc.) and higher many-body

contributions (dipole–dipole–dipole etc.). Here, we mainly use

the latest development from our group, the DFT-D3 scheme

(Grimme et al., 2010), that can be expressed as

E
ðD3Þ
disp ¼ � 1

2

X
n¼6;8

Xatom pairs

A6¼B

CAB
n

Rn
AB

f d
n ðRABÞ

� 1

6

Xatom triples

A 6¼B6¼C

CABC
9 1þ 3 cos �A cos �B cos �C

� �
R9

ABC

f d
9 ðRABCÞ:

ð3Þ
The damping functions f d

n are introduced to combine the D3

dispersion interaction with the semilocal correlation contri-

bution from the DFA (Grimme et al., 2011). In contrast to the

empirical D2 method, in D3 a modified Casimir–Polder inte-

gration [similar to equation (2)] yields the ab initio CAB
6 for

reference systems (hydrogenated atoms). Higher-order

dipole–quadrupole pair terms and dipole–dipole–dipole

three-body terms of Axilrod–Teller–Muto type (Axilrod &

Teller, 1943; Muto, 1943) are calculated via recursion relations

and averages, respectively, from the corresponding C6 coeffi-

cients. In the following, the D3 method is always applied in the

above given form, i.e. including C6, C8 and C9 contributions.

Tkatchenko and coworkers extended the TS method in order

to estimate the full many-body series in the dipole approx-

imation, which is dubbed many-body dispersion MBD

(Tkatchenko et al., 2012). A modern method not considered

here but worth mentioning is the exchange-dipole model

(XDM) of Becke and Johnson introduced in a series of articles

(Becke & Johnson, 2005a,b, 2006, 2007). The dDsC method is

a modification of XDM with a density-dependent zero-

damping function instead of the rational damping used in

XDM (and D3). Similar to the D3 method, in XDM higher-

order multipole contributions (C8 and C10) are included and

an Axilrod–Teller–Muto-type three-body term (C9) has been

considered. The importance of the higher-order multipole and

many-body terms is an active debate, see DiStasio et al. (2014),

Dobson (2014), Kennedy et al. (2014) and Otero-de-la-Roza &

Johnson (2015) for a detailed discussion of many-body

dispersion effects.

While we typically prefer the TPSS DFA, all other semi-

classical dispersion schemes are combined with the PBE

functional. Note that the PBE functional typically over-

estimates simple hydrogen-bonded systems (Brandenburg et

al., 2015; Bryantsev et al., 2009; Thanthiriwatte et al., 2011), but

crystal structure prediction
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this behavior is not systematically observed for systems with

multiple strong hydrogen bonds as e.g. in supramolecular

complexes (Sure & Grimme, 2015). In Table 1 we roughly

compare the estimated accuracy of the different methods

regarding the different intermolecular interactions, namely

exchange–repulsion (EXR), electrostatic (ES), induction

(IND) and dispersion (DISP). This accuracy estimation is

based on empirical benchmark performances as summarized

in Grimme et al. (2016), Goerigk & Grimme (2011), Peverati

& Truhlar (2014) and Řezáč et al. (2011). Note that only

approximate and mean relative trends are discussed. The table

is intended for non-experts in the field of noncovalent inter-

actions from electronic structure theory to help interpret the

results presented here. For instance, a bad performance of

plain PBE highlights missing DISP interactions, while large

errors of DFTB3-D3 highlight the strong effects of ES and

IND. The good error compensation between the various

energy components for HF on a minimal basis has been

analyzed before (Kruse & Grimme, 2012).

In addition to the semi-classical dispersion corrections, we

apply the M06L meta-GGA (Zhao & Truhlar, 2006) and the

vdW-DF2 (Lee et al., 2010) methods. The Minnesota func-

tional M06L covers medium range correlation by a very

flexible meta-GGA functional form and empirical fitting to

large training sets. In vdW-DF2 an approximation to the

charge density susceptibility (that can be related to polariz-

ability) is used to construct a nonlocal functional kernel that

properly describes the long-range dispersion interaction.

While vdW-DF2 has no many-body contributions, it integrates

the true charge density and thus represents the dynamic

multipoles to all orders. Because the single-point computation

of electronic energies on the structures provided by Price and

co-workers was one of the weakest points in our blind test

submission, we test the transferability of optimized structures

between the low-cost HF-3c method and the TPSS-D3 DFA.

The TPSS-D3 single-point energies on a HF-3c structure will

be dubbed TPSS-D3//HF-3c.

2.2. Generation of crystal energy landscapes

The generation of the TPSS-D3 crystal lattice energy

landscapes is described in the supporting information of the

blind test report (Reilly et al., 2016), here we only give a short

summary.

Our initial set of 1000 structures for each target was

provided by the Price group (see the supporting information

of Reilly et al., 2016) based on the approach that uses elec-

tronic structure calculations on the molecule only (Price,

2009). It was successful for the large flexible molecule in the

previous blind test (Kazantsev et al., 2011). The program

packages CrystalPredictor (Karamertzanis & Pantelides,

2007), DMACRYS (Price et al., 2010) and CrystalOptimizer

(Kazantsev et al., 2010) had been used in their generation and

refinement. The lattice energies used to determine the 1000

lowest energies used empirical exp-6 intermolecular poten-

tials, atomic multipoles and intramolecular energies from

PBE0 calculations on the isolated molecules in many confor-

mations. We filtered these structures in three steps. First, we

calculated a semi-empirical HF-3c (Sure & Grimme, 2013)

single-point energy at the force-field structure. In the second

step the energetically lowest structures are fully optimized at

the HF-3c level. Finally, the energetically lowest HF-3c

structures are reoptimized at the TPSS-D3 level.

3. Benchmark set

The target systems of the sixth crystal structure prediction

blind test are summarized in Table 2 and shown in Fig. 2. We

give the unit-cell symmetry, the measurement temperature

and the crystal mass density from the X-ray measurement

�X-ray
T . We estimate the ZPVE and thermal contribution to the

unit cell for each crystal at the DFTB3-D3 level (Brandenburg

& Grimme, 2014a) and use these values to back correct the

density �X-ray
T to ZPVE exclusive equilibrium (0 K) mass

densities �e. The values �e can be used for direct comparison

to results of geometry relaxations on the electronic energy

surface for convenient benchmarking. Note that for target 23,

five different polymorphic forms have been found (phase �-�).
For the other four targets (22, 24, 25, 26) only one polymorph

has been measured, although other metastable phases might

crystal structure prediction
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Table 1
Accuracy estimation of various methods to describe exchange–repulsion
(EXR), electrostatic (ES), induction (IND) and dispersion (DISP).

The scale indicates (0) no contribution, (1) bad, (2) acceptable, (3) good and
(4) very good accuracy.

DFA-DISP EXR ES IND DISP

PBE (+ semi-classical DISP)
PBE 3 4 3 0
PBE-D2 3 4 3 2
PBE-TS 3 4 3 3
PBE-dDsC 3 4 3 3
PBE-D3 3 4 3 4
PBE-MBD 3 4 3 4

Empirical and non-local DFA
M06L 3 4 3 2
vdW-DF2 3 4 3 4

D3-based hierarchical methods
TPSS-D3 3 4 3 4
HF-3c 3 3 1.5 4
DFTB3-D3 1 2 1.5 4

Table 2
Experimentally realised polymorphs from the sixth crystal structure
prediction blind test.

No. Space group Z(unit) �X-ray
T † �e‡ T (K)

22-0 P21/n 4 1.754 1.772 150
23-0� P21/c 4 1.351 1.420 299
23-0� P�11 2 1.380 1.444 299
23-0� P�11 4 1.394 1.483 301
23-0	 P21/n 4 1.335 1.406 301
23-0� P�11 4 1.350 1.420 292
24-0 P21/c 4 1.549 1.604 240
25-0 P21/n 4 1.402 1.471 298
26-0 P�11 2 1.346 1.408 298

† At temperature T measured mass density in g cm�3. ‡ ZPVE exclusive mass density
at T = 0 K in g cm�3 (estimated at the DFTB3-D3 level).
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exist. More details on the measurement conditions are given in

the main blind test report (Reilly et al., 2016).

We supplement the nine measured systems with ten addi-

tional low-energy structures per target molecule obtaining in

total 59 benchmark systems. This set is dubbed POLY59 in the

following. The additional systems are taken from our blind test

submission and correspond to the energetically lowest struc-

tures computed at the TPSS-D3 level. In order to remove

redundant structures, we use the Crystal Packing Similarity

Tool available through Mercury 3.6 (Macrae et al., 2008). The

crystal structure is represented by a 15-molecule cluster which

is considered identical when all molecules agree to within 25%

of the distances, angles and triangles, and the overall root

mean square deviation (RMSD) of the Cartesian coordinates

is below 0.5 Å. The full POLY59 set is given in Table 3.

TPSS-D3 provides highly accurate geometries (as shown

below). Therefore, the provided POLY59 structures can be

used to calculate single-point energies with all methods under

consideration without relaxing the geometry. As long as the

potential energy surfaces of the methods are roughly parallel

to the TPSS-D3 one, this approximation should have negli-

gible effects on relative energies. Note that our original

submission contains a few redundant structures. Additionally,

our submitted structures have been symmetrized (via

PLATON; Spek, 2009) that slightly modified the geometries.

For consistent single-point energy evaluations of the POLY59

set the structures provided here have to be used. These are

given in space group P1 as freely optimized at the TPSS-D3

level.

crystal structure prediction
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Table 3
Summary of all systems contained in the POLY59 benchmark set.

The suffix zero indicates the experimentally found structure, the mass density
(in g cm�3) is estimated at the TPSS-D3 level.

No. Sym. Z �TPSS-D3
e No. Sym. Z �TPSS-D3

e

22-0 P21/n 4 1.77 24-4 P21/c 4 1.55
22-1 P21/c 4 1.76 24-5 P21/c 4 1.54
22-2 P21/n 4 1.83 24-6 P212121 4 1.49
22-3 P21/c 4 1.79 24-7 P21/c 4 1.49
22-4 P21/n 4 1.75 24-8 Pna21 4 1.56
22-5 P�11 2 1.78 24-9 P212121 4 1.49
22-6 P�11 2 1.74 24-10 P21/c 4 1.57
22-7 P21 2 1.70 25-0 P21/c 4 1.42
22-8 P21/n 4 1.77 25-1 Pbca 8 1.43
22-9 Pna21 4 1.81 25-2 P�11 2 1.45
22-10 P21/c 4 1.76 25-3 P21/c 4 1.41
23-0� P21/c 4 1.41 25-4 P21/c 4 1.39
23-0� P�11 2 1.46 25-5 P�11 2 1.39
23-0� P�11 4 1.46 25-6 P�11 2 1.42
23-0	 P21/n 4 1.40 25-7 P�11 2 1.41
23-0� P�11 4 1.44 25-8 P�11 2 1.43
23-1 P�11 2 1.44 25-9 P21/c 4 1.38
23-2 P�11 2 1.47 25-10 P21/c 4 1.41
23-3 P�11 2 1.46 26-0 P�11 2 1.40
23-4 P�11 2 1.47 26-1 P21/n 4 1.43
23-5 P�11 2 1.46 26-2 P21/n 4 1.44
23-6 P�11 2 1.49 26-3 P21/n 4 1.42
23-7 P�11 2 1.42 26-4 P21/n 4 1.43
23-8 P�11 2 1.46 26-5 P21/c 4 1.44
23-9 P21/c 4 1.42 26-6 P�11 2 1.43
23-10 P21/n 4 1.45 26-7 C2/c 8 1.46
24-0 P21/c 4 1.60 26-8 P21/n 4 1.37
24-1 P21/c 4 1.55 26-9 P�11 4 1.46
24-2 P21/n 4 1.50 26-10 P�11 4 1.41
24-3 P21/c 4 1.51

Figure 2
Target systems of the sixth crystal structure prediction blind test depicted as Lewis structures and with a perspective ac projection of the experimentally
realised polymorphs.
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4. Results and discussion

4.1. Equilibrium geometries

Although the accuracy of the TPSS-D3 geometries has been

tested for crystals on the two benchmark sets X23 (Moellmann

& Grimme, 2014; organic molecules) and ICE10 (Branden-

burg et al., 2015; ice polymorphs), we first analyze the

performance for the blind test targets. Furthermore, analytical

gradients for MBD dispersion correction have been imple-

mented recently (Blood-Forsythe et al., 2016; Bučko et al.,

2016) and the blind test solids provide an unbiased set of

realistic test cases. In order to compare the measured X-ray

structures with the computed ones on the electronic energy

surface, one has to estimate the effects of ZPVE and thermal

(entropic) effects on the structure. As the intermolecular

potentials of organic molecules typically exhibit a slight

asymmetry with smaller curvature at longer intermolecular

distances, most organic crystals expand under heating. In the

first approximation, one can describe the effect isotropically

distributed in all spatial directions and analyze the potential

energy surface (PES) with respect to the unit-cell volumes.

Here we follow the procedure described in Brandenburg et al.

(2015; Grimme et al., 2015). The electronic PES for all nine

systems is computed at the DFTB3-D3 level. Harmonic

frequencies are calculated at all relaxed (constrained volume)

geometries and the corresponding electronic energy and free

energy minima are extracted from a Murnaghan equation of

state fit. The ratio �calc
e =�calc

T is used to correct the measured

mass densities �T to a ZPVE exclusive equilibrium mass

density at T = 0 K �e (cf. Table 3). The error in the final

benchmark values �e should be about 1% as estimated

previously (Brandenburg et al., 2015). In the same way, one

can isotropically correct the cell parameters leading to the

benchmark geometries summarized in Table 4.

The statistical performances of TPSS-D3, PBE-MBD and

the two low-cost alternatives on the geometry benchmark are

given in Table 5. The cell parameters of both dispersion-

corrected DFAs are very accurate with a MAD below 0.2 Å.

HF-3c is slightly worse with a MAD of 0.3 Å and a small

systematic shift of 0.1 Å towards cell parameters that are too

small, while the tight-binding based scheme yields substan-

tially underestimated cell lengths by 0.3 Å. The trend of too

small intermolecular (noncovalent) distances from DFTB3-

D3 is known from the above-mentioned X23 and ICE10

benchmark sets and seems to be a general property of the

method. Concerning the cell angle, i.e. the shape of the unit

cell, all methods are reasonably accurate and produce no clear

crystal structure prediction
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Table 4
Benchmark geometries of the experimentally realised blind test
polymorphs isotropically corrected for ZPVE and thermal effects.

a (Å) b (Å) c (Å) � (�) � (�) � (�) Vol. (Å3)

22-0
Ref. 11.906 6.673 12.555 90 108.6 90 945.50
TPSS-D3 11.909 6.646 12.511 89.9 108.5 90 938.77
PBE-MBD 12.103 6.756 12.865 90 109.7 90 990.57
HF-3c 11.449 6.553 12.312 89.9 105.7 90 889.43

23-0�
Ref. 10.980 10.356 15.968 90 95.7 90 1806.63
TPSS-D3 10.657 10.436 16.357 90 93.7 90 1815.23
PBE-MBD 10.803 10.489 16.335 90 94.4 90 1845.55
HF-3c 10.462 10.521 16.342 90 92.0 90 1797.67

23-0�
Ref. 6.901 7.688 18.619 85.3 80.8 65.8 888.49
TPSS-D3 7.214 7.692 17.631 88.5 80.8 64.8 873.05
PBE-MBD 7.221 7.770 17.943 87.6 80.5 64.5 895.57
HF-3c 7.185 7.734 17.317 89.5 80.8 65.4 862.05

23-0�
Ref. 7.482 11.793 20.026 84.8 85.4 80.1 1729.58
TPSS-D3 7.430 11.995 19.802 86.4 89.1 83.0 1748.24
PBE-MBD 7.492 12.011 19.977 86.1 88.4 82.9 1779.30
HF-3c 7.380 11.860 19.716 87.4 90.4 83.2 1711.73

23-	
Ref. 13.648 10.544 13.837 90 113.6 90 1824.28
TPSS-D3 13.739 10.591 13.460 89.1 111.4 90.7 1823.51
PBE-MBD 13.789 10.632 13.553 89.2 111.8 90.6 1845.08
HF-3c 14.638 10.367 13.049 90 114.2 90 1806.80

23-0�
Ref. 6.575 11.976 23.982 102.9 96.7 97.2 1805.39
TPSS-D3 6.689 11.539 23.949 99.2 98.2 98.0 1781.38
PBE-MBD 6.705 11.652 23.968 99.0 98.2 97.7 1806.96
HF-3c 6.566 11.341 24.520 100.3 98.0 98.9 1748.47

24-0
Ref. 3.979 21.058 10.008 90 97.8 90 830.90
TPSS-D3 4.024 20.761 10.001 90 98.4 90 826.65
PBE-MBD 4.093 21.008 10.009 90 98.1 90 852.19
HF-3c 4.058 21.016 10.003 90 98.3 90 844.29

25-0
Ref. 10.243 27.109 7.983 90 109.6 90 2088.51
TPSS-D3 10.376 27.278 8.104 90 109.8 90 2157.53
PBE-MBD 10.346 27.217 8.050 90.1 110.1 90 2128.64
HF-3c 10.318 27.274 7.773 90 109.5 90 2061.81

26-0
Ref. 10.247 10.866 13.968 76.8 73.3 63.5 1323.94
TPSS-D3 10.238 10.872 13.888 78.1 73.7 63.8 1325.12
PBE-MBD 10.273 10.960 13.914 78.2 73.8 64.0 1345.81
HF-3c 10.087 10.740 13.650 80.5 75.4 65.6 1300.43

Table 5
Statistical performance of dispersion-corrected DFAs and low-cost
alternatives to compute the polymorph geometries.

MD: mean deviation; MAD: mean absolute deviation; SD: standard deviation;
MAX: maximum absolute deviation.

TPSS-D3 PBE-MBD HF-3c DFTB3-D3

Cell length (Å)
MD �0.04 0.04 �0.10 �0.34
MAD 0.17 0.16 0.31 0.50
SD 0.27 0.21 0.43 0.62
MAX 0.99 0.68 1.30 1.82

Cell angles (�)
MD 0.3 0.3 0.6 1.5
MAD 1.0 1.0 1.4 2.4
SD 1.6 1.4 2.0 4.3
MAX 3.7 3.9 5.0 19.1

Cell volume (%)
MD 0.1 2.0 �1.8 �9.3
MAD 1.0 2.0 2.1 9.3
SD 1.5 1.4 2.1 4.0
MAX 3.3 4.8 5.9 18.1

electronic reprint



outlier. Interestingly, the largest errors of the two DFAs for

both cell parameters occur for the same systems, specifically

23-0� (parameter c) and 23-0� (parameter �). Typically, the
most sensitive geometry property is the unit-cell volume or the

related mass density. Here, TPSS-D3 performs excellently

with the smallest MAD of 1%, which is within our estimated

reference error. While PBE-MBD has slightly too large unit-

cell volumes and MAD of 2%, HF-3c underestimates the unit-

cell volumes leading to the same MAD.

The unit-cell volumes are directly translated into crystal

mass densities. A graphical representation of the methods

performance is shown in Fig. 3. Overall, TPSS-D3 seems to

provide very good geometries of the molecular crystals within

the blind test challenge. Note that a direct comparison with the

X-ray data without proper treatment of the ZPVE and

thermal effects substantially increases the errors of all shown

methods. For instance, the MADs of the unit-cell volumes

increases to 4 and 3% for TPSS-D3 and PBE-MBD, respec-

tively. The structure match conducted in the blind-test

evaluation is of this type, which is reasonable as in principle

free-energy structures should be submitted. The averaged

RMSD (crystal packing similarity tool, see x3, full table in the

supporting information) on all nine structures is 0.27, 0.24,

0.41 and 0.59 Å for TPSS-D3, PBE-MBD, HF-3c and DFTB3-

D3, respectively. The values for the dispersion-corrected

DFAs are very reasonable, considering that no thermal

expansion had been taken into account here. As PBE-MBD

systematically overestimates the unit-cell volumes while HF-

3c underestimates it, the PBE-MBD errors are slightly smaller.

Interestingly, the deviations for system 23 are largest. For this

system, the estimated thermal expansion is most pronounced

(cf. Table 2). As known from previous studies (Brandenburg et

al., 2015), the tight-binding method has substantially too close

intermolecular distances leading to RMSDs of � 0.5 Å

compared with the original X-ray structure.

4.2. Energy ranking

The TPSS-D3 geometries are of high quality, as shown in

the previous section. Therefore, we use the TPSS-D3 struc-

tures for the POLY59 set (as computed in the sixth crystal

structure prediction blind test) as fixed benchmark geometries

to test other electronic structure methods.

We use the methods summarized in x2, i.e. focusing on

dispersion-corrected DFAs. For each experimental poly-

morph, we compare its lattice energy with those of the

competing structures and sort them energetically. The

complete lists are given in the supporting information. We give

the corresponding rank of the experimental polymorphs and

the relative energy �E with respect to the theoretically most

stable structure. Ideally, the rank is one and therefore �E

zero. For the target (XXIII) with five polymorphs, the analysis

is less clear as their stability depends on the experimental

condition. However, we assume that these five should be the

lowest-energy polymorphs without defining their order. In this

way we apply the same ranking system and the overall best

summed and mean rank over all nine polymophs is 19 and 2.1,

respectively. The worst possible ranking within our restricted

POLY59 set is 109 and 12 for the summed and mean ranks. All

individual values are given in the supporting information and

a statistical summary is given in Table 6.

In Fig. 4 we show the relative lattice energies of the

POLY59 set computed with TPSS-D3. For the five targets 22,

23b, 24, 25 and 26, the experimental polymorph is indeed

computed to be the energetically most stable one. Although

there is a close-lying crystal structure 22-1, target 22 seems to

be rather easy for the dispersion-corrected DFAs as all find

crystal structure prediction
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Figure 3
Deviations of crystal mass densities computed by several electronic
structure methods compared with back-corrected experimental refer-
ences. The statistical measures are represented as normal error
distributions although their actual distribution might be slightly
asymmetric. We highlight the systematic error, when the TPSS-D3
equilibrium (at T = 0 K, ZPVE exclusive) densities �TPSS-D3

e are directly
compared with the uncorrected finite temperature X-ray densities �X-ray

T .

Figure 4
Relative crystal energies of the POLY59 set as computed with TPSS-D3.
The experimental polymorphs are shown as red bars.
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the experimental structure as the most stable one. The results

of the less successful HF-3c and DFTB3-D3 methods indicate

that target 22 requires an accurate treatment of induction and

exchange repulsion. Target 23 is the most problematic system

of the whole blind test. While the five experimental poly-

morphs are within an energy window of � 6 kJ mol�1, there

are several competing structures. Further, there is a large

spread of the results of all applied DFAs. By just considering

the Lewis structure of target 24 with partially conjugated

functional groups and significant partial charges, it seems to be

a substantial challenge. While this is certainly true for the

search algorithms, the final energy evaluation is comparably

easy. This can be seen from the significant energy gap

(� 8 kJ mol�1) between the experimental polymorph 24 and

the next stable structure. As a result, all methods that account

for dispersion interactions in some way are successful. This

may also explain why the tailor-made force field of Neumann

and co-workers (in their blind test submission; Reilly et al.,

2016) is able to describe this system without considering

explicitly induction effects. The co-crystal (25) has one close

lying competing structure that is estimated as the most stable

structure by PBE-D2 and PBE-MBD. According to the

successful methods TPSS-D3, PBE-TS and PBE-D3 its energy

difference is only 0.5–1.5 kJ mol�1. Together this indicates that

the orthorhombic structure 25-1 may be a competing poly-

morph to the experimentally found 25-0. A similar situation

can be seen for target 26. Here, two alternative structures

(monoclinic 26-1 and 26-2) compete energetically with the

experimentally found triclinic structure (26-0). Again, several

methods compute them to be energetically more stable

(M06L, vdW-DF2, PBE-TS and PBE-dDsC), while others

predict them to be less stable compared with the experimental

polymorph by less than 4 kJ mol�1 (TPSS-D3, PBE-D3 and

PBE-MBD).

Overall, TPSS-D3 and PBE-D3 have the highest success

rate of all the electronic structure methods tested. PBE-MBD

also performs well and seems to be a substantial improvement

over PBE-TS although the number of hits is only four for

both. However, with PBE-MBD the mean rank of the

experimental structures and their mean energy difference to

the most stable polymorph is with 11.3 and �0.9 kJ mol�1,

respectively, very good. This is similar to the PBE-D3 rankings

of 10.3 and �1.2 kJ mol�1. While the C6 only dispersion-

corrected methods (D2, TS, dDsC) perform reasonably, they

are clearly outperformed in all the analyzed statistics by the

D3- and MBD-corrected DFAs. The accuracy of M06L and

vdW-DF2 seems to be closer to the simple pairwise dispersion

corrections. The results of the plain PBE functional have to be

judged carefully. While the mean computed rank is similar to

vdW-DF2, this is only possible by using the good TPSS-D3

geometries. The uncorrected PBE lattice energies are positive

for several crystals, which would result in unbound crystals.

Interestingly, all pairwise dispersion corrections seem to

overestimate the dispersion interaction as indicated by an

over-stabilization of closed-packed structures. Only upon

inclusion of higher-order terms (C8, C9 etc.) a clear improve-

ment over plain PBE is apparent.

Note that although optimized structures at the DFTB3-D3

and HF-3c levels exist for the full POLY59 set (cf. with the

previous section), we evaluate them on the TPSS-D3 geome-

tries for consistent comparison with the other DFAs. The low-

cost alternatives DFTB3-D3 and HF-3c perform as expected

and the mean ranks increase to 7.2 and 8.2, respectively, and

mean relative energies to �9.3 and �14.7 kJ mol�1, respec-

tively. While this is worse than most tested DFAs, one has to

consider the substantial computational speed-up of up to four

orders of magnitudes. A rather cost-efficient improvement of

the HF-3c method is a TPSS-D3 single-point energy calcula-

tion on the HF-3c structure. The accuracy of the HF-3c

structures have been shown in the previous section and this

seems to translate into more or less parallel potential energy

surfaces with respect to TPSS-D3. The mostly parallel

potential energy surfaces of PBE-TS and PBE-MBD are

probably also the reason why the approach of Tkatchenko and

co-workers to compute PBE-MBD energies on PBE-TS

structures can be successfully applied (Reilly et al., 2016).

As a comparison and cross check, Table 6 additionally gives

the MADs on the lattice energy benchmark set X23 as

summarized in Grimme et al. (2016). One can see a clear

correspondence between a good performance on the X23 set

and a successful energy ranking of the POLY59 structures. For

instance, the Pearson correlation coefficient between the

mean energy difference to the most stable structure (�E) and

the X23 MAD for all dispersion accounting methods is 0.67

and for the PBE based methods it even increases to 0.91.

Apparently, one can generally improve the relative crystal

stabilities by computing better absolute lattice energies. While

this is reasonable, it is still an important finding as the refer-

ence values of both sets have certain limitations.

In order to analyze if certain similar structures are more

consistently described by the various applied methods, we

tried to correlate the deviation of different methods (e.g. the

crystal structure prediction
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Table 6
Performance of electronic structure methods for the POLY59 set.

We give the mean rank of the experimental polymorph, the mean energy
difference to the most stable structure (kJ mol�1), the mean energy interval of
all structures (kJ mol�1), and the number of hits, i.e. how often the
experimental polymorph is computed as most stable structure. For each
quality measure we highlight the two best performing methods.

Rank �E �Emin
max # hits X23†

TPSS-D3 3.4 �2.0 11.4 5 4.6
TPSS-D3//HF-3c 4.9 �2.2 9.7 2 –
HF-3c 7.2 �9.3 20.4 1 9.2‡
DFTB3-D3 8.2 �14.7 29.2 1 10.0§
M06L 5.7 �3.9 14.5 3 9.6
vdW-DF2 4.1 �2.7 18.4 2 6.3
PBE 4.0 �4.6 19.5 2 48.5
PBE-D2 5.4 �2.9 12.0 3 7.5
PBE-TS 4.7 �3.7 14.9 4 10.0
PBE-dDsC 4.2 �14.6 19.3 3 –
PBE-D3 2.8 �1.2 10.3 5 5.0
PBE-MBD 2.7 �0.9 11.3 4 6.3

† Mean absolute deviation on lattice energy benchmark set (X23) in kJ mol�1 as
summarized in Grimme et al. (2016). ‡ From Brandenburg et al. (2014). § From
Brandenburg & Grimme (2014a).
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TPSS-D3 stabilities with the PBE-MBD ones) with the mass

density. However, for none of the density functionals is a clear

correlation apparent. Only for DFTB3-D3, a mild correlation

(overestimation of densely packed structures) is found, which

can be explained by its general problems with the Pauli

repulsion regime (Gaus et al., 2011). Additionally, we

compared the mean absolute difference of all structures

between the TPSS-D3 and PBE-MBD stabilities with a subset

containing only the same space group as the experimental

structure. Although we expect this subset to exhibit similar

packing motifs, the energy difference is only slightly reduced

by 5% on average.

In Fig. 5 we compare the energy rankings of several

methods for the co-crystal 25. We show the D3-based hier-

archical methods, specifically DFTB3-D3, HF-3c, TPSS-D3//

HF-3c (computed on HF-3c geometries) and TPSS-D3. As

indicated by the statistical performance, the ranking improves

in the order DFTB3-D3 (6), HF-3c (5), TPSS-D3//HF-3c (3)

and TPSS-D3 (1). A general trend is that the less accurate

methods (with worse mean ranking) also have a larger energy

spread, the Pearson correlation coefficient is 0.7. This can also

be seen for target 25, i.e. the energy spread decreases in the

above given order (cf. Fig. 5). Additionally, we compare the

TPSS-D3 ranking with PBE-D3 and PBE-MBD. The rankings

are rather similar, but even here we see some re-ordering,

denoting that more accurate electronic structure methods are

needed for energetically very close lying polymorphs. This

example also highlights that the effect of the density func-

tional (TPSS versus PBE) is more pronounced compared with

the effect of the dispersion correction (D3 versus MBD).

Therefore, the next reasonable step to gain higher accuracies

is the application of a hybrid DFA, for instance PBE0-D3

energies on the TPSS-D3 structures.

4.3. Stability analysis

In order to help and guide future applications of the

provided test set, we want to analyze the importance of the

neglected effects here. The first is our basic assumption that

the TPSS-D3 equilibrium geometries are accurate and

consistent enough for the other electronic structure methods.

We showed in x4.1 that the predicted mass densities (and other

lattice parameters) agree excellently with the X-ray

measurements when the ZPVE and thermal effects are back-

corrected from the measured properties. Still, the use of the

equilibrium geometries throughout the energy-ranking

analysis might introduce a mild bias. Therefore, we recom-

puted the stability of all measured polymorph structures of 23

with appropriately scaled unit-cell volumes (cf. x4.1) and

subsequent relaxation of the atomic positions. The modified

stabilities are summarized in Table 7.

All energies rise slightly as they should. Although some unit

cells are scaled significantly by 5%, the resulting energy

differences are comparably small. This is due to the apparently

flat potential energy landscape. The largest energy difference

is � 1 kJ mol�1. While for the relative energies this is still

0.5 kJ mol�1, which can in principle be important for the

stabilities.

The free-energy contributions to the relative stability are

the second neglected effect. In our second blind test submis-

sion (Reilly et al., 2016) we computed ZPVE and thermal

contributions via harmonic HF-3c frequencies, which did not

change the rank of the energetically lowest predicted struc-

tures (within the TPSS-D3 list) and the effect on relative

energies was always below 2 kJ mol�1. We therefore suggest

computing this contribution only for the very close lying

polymorph candidates. For energy landscapes with a signifi-

cant gap between the structures (e.g. target 24), a pure elec-

tronic energy ranking will presumably be sufficient. In order to

demonstrate typical relative contributions of the different

thermodynamic contributions, we summarized them in Table 8

for the five polymorphs of target 23. For the entropic contri-

bution, the low lying modes are crucial. Previously, we

computed �-point frequencies at the HF-3c level for the

primitive unit cells. We estimate the effect of low-lying modes

at the DFTB3-D3 level by generating supercells with a

minimum unit-cell parameter of 12.5 Å, i.e. the given ther-

modynamic contributions are

�HF�3c
supercell ¼ �HF�3c

unit cell þ �DFTB3�D3
supercell � �DFTB3�D3

unit cell

� �
:

crystal structure prediction
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Figure 5
Relative crystal energies of the co-crystal (target 25) computed with the
D3-based hierarchical methods and PBE-MBD as comparison. The
experimental polymorphs are shown as red bars and the reordering is
denoted by dotted lines.

Table 7
Dependence of the crystal stabilities on the TPSS-D3 geometry.

The energy difference �E between the full relaxation (equilibrium energy
surface) and the scaled unit cell (free energy surface) is given per mole.

No. Scaling (%) �E (kJ mol�1)

23-0� 5.11 0.97
23-0� 4.64 0.64
23-0� 6.38 2.19
23-0	 5.32 0.70
23-0� 5.19 0.48
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The lattice energy is given as the above estimated TPSS-D3

energy on the free energy surface.

The volume work PV is identical for all structures, which is

due to the similar volume per molecule of the different

polymorphs, and the normal pressure condition. Larger

differences can be archived by increasing the external pres-

sure. The zero-point vibrational energy and the thermal

vibrational energy have a range of � 1.5 kJ mol�1. The addi-

tive quantity �EZPVE þ �Et þ �PV has an energy spread

below 1 kJ mol�1. This results in an unmodified enthalpy

ranking of the five polymorphs compared with the plain

electronic lattice energy. The entropy term deviates more

pronounced, yielding an energy difference �TS of up to

6 kJ mol�1. Interestingly, this leads to a destabilization of

polymorph 23� in accordance with the measurements, where

form � and 	 should be the most stable structures around room

temperature. This is in reasonable agreement with our free

energy estimates. Still, it is not 100% consistent as � should be

most stable at 257 K and 	 at 293 K. Within our estimates, the

temperature has to be significantly higher to destabilize form �
relative to form 	. Further, the relative rank of � and 	 is

reversed, which could only agree with the experimental

measurements when the entropy contributions are modified.

Thus, some inconsistencies remain, but the most

pronounced effect of destabilizing form � seems to be correct.

Especially when investigating polymorphism at different

external conditions, explicit temperature and pressure inves-

tigations seems necessary.

5. Conclusions

We used the crystal energy landscapes of the sixth crystal

structure prediction blind test to compile a benchmark set

POLY59. As we are testing relative crystal stabilities, the set

reflects the ability of a method to compute polymorph stabi-

lities. The set consists of nine experimental structures (five

polymorphs) and is complemented with the ten energetically

lowest structures from our TPSS-D3 blind test submission.

First, we back-corrected the measured X-ray geometries for

thermal and zero-point vibrational effects. This enables a

direct comparison with optimizations on the electronic energy

surface. We highlighted the excellent geometries of PBE-

MBD and TPSS-D3, where the latter one yields more accurate

mass densities with an MAD of only 1%. Second, the TPSS-

D3 geometries are used to benchmark several dispersion-

corrected DFAs concerning their energetic polymorph

ranking. We use the number of hits (the lowest energy struc-

ture is the experimental one) as well as the mean computed

rank and corresponding energy difference to the most stable

structure as quality measures. Again, TPSS-D3 is one of the

most successful methods together with PBE-D3 and PBE-

MBD providing 5, 5 and 4 hits, respectively. The mean energy

difference of the experimental structure with respect to the

most stable computed structure is below 2 kJ mol�1 for all

three methods, i.e. we gain about a factor of two in accuracy

for the computation of relative lattice energies compared with

absolute sublimation enthalpies. We showed that the D3- and

MBD-corrected DFAs outperform other dispersion correc-

tions (D2, TS, dDsC) as well as the Minnesota functional

M06L and the van der Waals density functional vdW-DF2.

Some low-cost methods are shown to provide reasonable

results useful for screening applications.

For higher accuracies (e.g. a correct energy ranking within

1 kJ mol�1), one has to consider several additional steps:

(a) Improve the electronic energy contribution by using a

hybrid density functional, e.g. PBE0-D3 or HSE06-D3 on the

TPSS-D3 geometries.

(b) Compute the free energy corrections to the electronic

energy.

(c) Use a (isotropic) free-energy correction on the geome-

tries to compute (a) and (b) on the correct free energy surface.

Concerning point (a) high-level quantum chemical methods

could in principle be applied as demonstrated by Chan

coworkers for benzene (Yang et al., 2014; Beran, 2015).

However, the computational costs are substantial and rarely

applicable in routine crystal structure predictions. More cost-

efficient strategies such as a related fragmented MP2c

approach by Beran could be useful to confirm PBE0-D3

results (Beran et al., 2014). The ZPVE and thermal (entropic)

contributions to the free energy could possibly be computed at

a lower computational level and may have an impact on the

polymorph ranking (Nyman & Day, 2015; Heit et al., 2016). In

our TPSS-D3 blind test rankings we computed harmonic HF-

3c frequencies, which did not change the rank of the experi-

mental polymorph and the effect on relative energies was

always below 2 kJ mol�1. Therefore, we think that this has to

be combined with improvements (a) and (c) for conclusive

results. We showed how the isotropic geometry corrections to

free energies can be performed at the tight-binding level, and

this can be done for all predicted structures with subsequent

constrained optimizations at the DFA level.

Overall we can conclude that a robust routine scheme to

high-accuracy crystal energy landscapes has been developed at

a full quantum chemical, first-principles level. A prerequisite

is that efficient and accurate prefiltering at a lower theory level

has been conducted so that a limited number of structures (in

the thousands) are finally evaluated. Hence, the two main

future challenges are the initial sampling of the huge poly-

crystal structure prediction
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Table 8
Thermodynamic functions for the five polymorphs of target 23 under
normal conditions.

We give the lattice energy Elatt at the TPSS-D3 level computed on scaled
TPSS-D3 geometries (see above). Additionally, zero-point and thermal
vibrational energies �EZPVE and �Et, volume work �PV, entropy �TS,
enthalpy �H and free enthalpy, a.k.a. Gibbs free energy �G, are computed
with harmonic HF-3c frequencies including corrections for low lying modes
estimated at the DFTB3-D3 level. All energies are given per molecule, relative
to the gas phase, and in kJ mol�1.

No. Elatt �EZPVE �Et �PV �TS �H �G

23-0� �190.1 7.5 6.3 �2.5 �65.5 �178.7 �113.2
23-0� �193.2 8.7 5.0 �2.5 �71.9 �181.9 �110.0
23-0� �188.0 8.9 5.7 �2.5 �70.6 �175.4 �105.3
23-0	 �189.0 8.2 5.8 �2.5 �69.0 �177.4 �108.4
23-0� �189.4 8.7 5.6 �2.5 �69.7 �177.6 �107.9
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morph space and an improved relative free-energy calculation

of the lowest polymorph structures within 1 kJ mol�1.

APPENDIX A
Technical details of the calculations

The periodic structure relaxations were conducted with a

developer version of the CRYSTAL14 program (Dovesi et al.,

2014). It is the ideal choice for cost-effective HF-3c calcula-

tions in small basis sets as it can exploit full point and space

group symmetry (Orlando et al., 2014). The tight-binding

DFTB3 is used in its third-order variant with self-consistent

charge redistribution as implemented in dftbþ (Seifert &

Joswig, 2012; Aradi et al., 2007; Elstner, 2007). We use the 3OB

Slater–Koster files generated by Elstner and coworkers and

damp all hydrogen-containing pair potentials with an expo-

nent of 4.2 (Gaus et al., 2013). The DFA energy and gradient

contributions are computed with the VASP5.4 program

package (Kresse & Furthmüller, 1996a,b). We use the

projector augmented plane wave (PAW) basis sets with upper

energy cutoff of 800 eV (Blöchl, 1994; Kresse & Joubert,

1999). The Brillouin zone is sampled with a �-centered k-mesh

with grid density of at least 0.025 Å�1. Standard integral

thresholds and large DFA integration grids were used. The

calculation of the D2 (Grimme, 2006) and D3 (Grimme et al.,

2010, 2011) dispersion correction is carried out within the

CRYSTAL14 code, which includes efficient analytical deri-

vatives of the three-body dispersion. They are accessible in

our freely available dftd3 from our website (http://

www.thch.uni-bonn.de/tc/dftd3). The TS (Tkatchenko &

Scheffler, 2009), MBD (Tkatchenko et al., 2012), dDsC

(Steinmann et al., 2009), M06L (Zhao & Truhlar, 2006) and

vdW-DF2 (Lee et al., 2010) energy contributions are calcu-

lated within VASP with default thresholds. The efficient

reciprocal space implementation of the MBD gradient was

recently introduced by Bučko and coworkers (Bučko et al.,

2016) and we used it with the identical Brillouin zone sampling

as given above. Note that due to slightly tighter numerical

thresholds compared with the blind test submission, small

energy differences of � 0.4 kJ mol�1 can occur.
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Buṽar, D.-K., Lancaster, R. W. & Bernstein, J. (2015). Angew. Chem.
Int. Ed. 54, 6972–6993.

Carter, D. J. & Rohl, A. L. (2014). J. Chem. Theory Comput. 10, 3423–
3437.

Casimir, H. B. G. & Polder, D. (1948). Phys. Rev. 73, 360–372.
Day, G. M., Cooper, T. G., Cruz-Cabeza, A. J., Hejczyk, K. E.,
Ammon, H. L., Boerrigter, S. X. M., Tan, J. S., Della Valle, R. G.,
Venuti, E., Jose, J., Gadre, S. R., Desiraju, G. R., Thakur, T. S., van
Eijck, B. P., Facelli, J. C., Bazterra, V. E., Ferraro, M. B., Hofmann,
D. W. M., Neumann, M. A., Leusen, F. J. J., Kendrick, J., Price, S. L.,
Misquitta, A. J., Karamertzanis, P. G., Welch, G. W. A., Scheraga, H.
A., Arnautova, Y. A., Schmidt, M. U., van de Streek, J., Wolf, A. K.
& Schweizer, B. (2009). Acta Cryst. B65, 107–125.

Day, G. M., Motherwell, W. D. S., Ammon, H. L., Boerrigter, S. X. M.,
Della Valle, R. G., Venuti, E., Dzyabchenko, A., Dunitz, J. D.,
Schweizer, B., van Eijck, B. P., Erk, P., Facelli, J. C., Bazterra, V. E.,
Ferraro, M. B., Hofmann, D. W. M., Leusen, F. J. J., Liang, C.,
Pantelides, C. C., Karamertzanis, P. G., Price, S. L., Lewis, T. C.,
Nowell, H., Torrisi, A., Scheraga, H. A., Arnautova, Y. A., Schmidt,
M. U. & Verwer, P. (2005). Acta Cryst. B61, 511–527.

DiStasio, R. A., Gobre, V. V. & Tkatchenko, A. (2014). J. Phys.
Condens. Matter, 26, 213202.

Dobson, J. F. (2014). Int. J. Quantum Chem. 114, 1157–1161.
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri,
B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M.,
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