PHYSICAL REVIEW B 94, 115144 (2016)

Benchmark tests of a strongly constrained semilocal functional with a long-range
dispersion correction

J. G. Brandenburg,-” J. E. Bates,” J. Sun,>' and J. P. Perdew>?
'London Centre for Nanotechnology, University College London, 17-19 Gordon Street,
London WCIH 0OAH, United Kingdom
2Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
3Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
(Received 24 May 2016; revised manuscript received 18 August 2016; published 21 September 2016)

The strongly constrained and appropriately normed (SCAN) semilocal density functional [J. Sun, A.
Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015)] obeys all 17 known exact constraints
for meta-generalized-gradient approximations (meta-GGAs), and it includes some medium-range correlation
effects. Long-range London dispersion interactions are still missing, but they can be accounted for via an
appropriate correction scheme. In this study, we combine SCAN with an efficient London dispersion correction
and show that lattice energies of simple organic crystals can be improved with the applied correction by 50%.
The London-dispersion corrected SCAN meta-GGA outperforms all other tested London-dispersion corrected
meta-GGAs for molecular geometries. Our method yields mean absolute deviations (MADs) for main group bond
lengths that are consistently below 1 pm, rotational constants with MADs of 0.2%, and noncovalent distances
with MADs below 1%. For a large database of general main group thermochemistry and kinetics (~800 chemical
species), one of the lowest weighted mean absolute deviations for long-range corrected meta-GGA functionals
is achieved. Noncovalent interactions are of average quality, and hydrogen bonded systems in particular seem
to suffer from overestimated polarization related to the self-interaction error of SCAN. We also discuss some
consequences of numerical sensitivity encountered for meta-GGAs.
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I. INTRODUCTION

Kohn-Sham density-functional theory (KS-DFT) [1,2] has
become an irreplaceable tool for the calculation of electronic
structure in chemical and physical sciences. Within KS-DFT,
a noninteracting system is introduced with an effective one-
particle Hamiltonian, /gs, whose ground-state density p is
equivalent to the interacting system. The wave function of the
auxiliary noninteracting system is an antisymmetrized product
of single-particle eigenfunctions y; (KS orbitals), the solutions
of a coupled set of nonlinear equations,

hxs i (r) =€ (r), (D
hxs =T + Vexe + Veou + Vie, ()

with kinetic energy operator T, external potential (typically
describing the fixed nuclear charges) Vem, the mean-field
Coulomb (or Hartree) potential VcOul, and the exchange-
correlation (xc) potential Vee.

While DFT is in principle an exact theory, in practice the
exchange-correlation energy has to be approximated. Density-
functional approximations (DFAs) are constructed by satisfy-
ing known exact constraints, or by empirical fitting. There are
three main classes of DFAs that use only the local density and
other semi-locally-available information to approximate the xc
energy, Ey.. The first is the local spin density approximation
(LSDA), which is exact for the uniform electron gas [3].
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LSDA is still widely used in the solid-state community with
recent extensions to finite-temperature free energies [4]. While
extended metallic systems can be described reasonably well by
the LSDA, typical molecular systems require inclusion of the
density gradient as in the generalized gradient approximation
(GGA). The most prominent GGAs are the Perdew-Burke-
Ernzerhof (PBE) exchange and correlation functionals [5] and
the Becke exchange (B88) [6] combined with the Lee-Yang-
Parr (LYP) correlation functional [7]. A natural extension
of GGAs is to use higher-order derivatives of the electron
density or other semi-locally-available information, leading to
the meta-GGA class. A typically employed variable is the KS
kinetic energy density T = % 3", IV |%. Popular meta-GGAs
are the Tao-Perdew-Staroverov-Scuseria (TPSS) functional [8]
and the Minnesota functionals MO6L [9], M11L [10], and
MNI12L [11] by Truhlar and co-workers. A recently introduced
empirical meta-GGA with a smoothness constraintanda VV10
long-range dispersion correction, B97M-V, was presented by
Mardirossian and Head-Gordon [12]. Constraint-satisfaction
based meta-GGA functionals have gained more attention
in recent years [13,14]. The SCAN functional is also a
meta-GGA [15].

In contrast to the empirical design of the Minnesota
functionals, SCAN was built to satisfy the 17 known exact con-
straints for a semilocal functional and to fit appropriate norms
(but not any bonded systems). Because SCAN is a major step
forward in constraint satisfaction, and because its enhancement
factor over local exchange is quite different [15] from those
of other functionals, extensive benchmarking is necessary. In
particular, one must check that the dramatic improvements of
SCAN over other semilocal functionals for certain systems
and properties [16] are not bought at the price of an overall
deterioration for other systems and properties. SCAN has been
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shown to be superior to PBE for several standard molecular
and solid-state test sets [15,16]. It is an efficient functional
covering intermediate-range London dispersion interactions
that demonstrates simultaneous accuracy for diversely bonded
systems around equilibrium. SCAN is comparable to or
even more accurate than a computationally more expensive
hybrid GGA [16]. However, it is still a semilocal functional
that inevitably fails for systems in which the long-range
effects are important, such as in the self-interaction error
encountered in stretched H;’ and long-range van der Waals
interactions.

Mixing part of the semilocal exchange with nonlocal Fock
exchange can reduce the self-interaction error, and it is the
dominant approach in quantum chemistry. These hybrid DFAs
were originally introduced by Becke and are motivated by the
adiabatic connection [17]. Similarly, double-hybrid DFAs use
virtual orbital space to construct an approximate correlation
energy [18,19]. Hybrid and double-hybrid DFAs are more
computationally demanding than semilocal functionals. While
(meta-)GGAs scale as N3, where N is the size of the
orbital basis, hybrids and double-hybrids scale as N* and N°,
respectively. Hybrid and double-hybrid variants of SCAN have
recently been reported [20].

Long-range, attractive London dispersion interactions are
important for describing extended systems such as condensed
hard and soft matter, larger molecular assemblies, or adsorp-
tion processes on various surfaces. For reviews or overviews
on the “dispersion problem in DFT,” see Refs. [21-23]. In this
study, we show how to combine the SCAN meta-GGA with
modern London dispersion corrections. While we will focus
on the most efficient D3 scheme by Grimme and co-workers
[24], we will also consider the VV 10 nonlocal density kernel
by Vydrov and Van Voorhis [25]. A related SCAN+rVV10
scheme, where rVV 10 stands for arevised VV10 [26], has also
been developed and yields excellent accuracy for predicting the
properties of layered materials [27].

Due to their computational efficiency, (meta-)GGA DFAs
are heavily relied upon for the computation of geometries.
For other properties (e.g., band gaps of solids), more accurate
results from hybrid and double-hybrid DFAs [18,28] or even
high-level (local) coupled cluster methods are needed [29-31].
Specifically for condensed phases, geometry optimizations
with a hybrid DFA using large orbital basis sets are not
amenable for routine applications. In systems with local
electron density, small atom-centered orbital basis sets can
be employed, which makes screened hybrid functional cal-
culations feasible [32]. However, basis-set errors have to be
compensated for, and a meta-GGA with improved equilibrium
geometries is still desired.

We begin with a short methodological description in Sec. I1.
The consequences of the sensitivity with respect to integration
grids sometimes encountered for meta-GGAs [33,34] are
discussed in Sec. II A. Then, the D3 and VV10 London
dispersion corrections are described, and the recommended
damping parameters are given in Sec. II B. Section III focuses
on the accuracy of the combined SCAN-D3 method, and we
give a broad overview on various covalent and noncovalent
bonding regimes (Sec. Il A). In addition, noncovalent inter-
action energies and some main group thermochemistry and
kinetics are analyzed in Secs. III B and III C.
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II. METHODOLOGY
A. The SCAN meta-GGA

A general meta-GGA form for the xc energy can be
written as

Ep = f dr f(p(),y (0),7(1)), 3)

where we define y(r) = Vpo(r) - Vp(r). SCAN improves upon
previous nonempirical meta-GGAs such as TPSS and MGGA-
MS [14] by satisfying more exact constraints on the xc
energy and by resolving the “order of limits” problem [35]
encountered for meta-GGA parametrizations of f using both
of the T-dependent variables z = TV /7 and o, defined below,
where VW = |V p|?/8p is the von Weizsicker kinetic-energy
density. Instead, SCAN utilizes only the T-dependent variable
a = (r — VW) /7" to identify different density regimes such
as those found in covalent (¢ = 0), metallic (¢ =~ 1), and weak
(@ >> 1) bonds. 7" = (3/10)(372)*3n/3 is the kinetic
energy density of a uniform electron density. Parametrizing
the functional using «, however, can lead to some numerical
sensitivity in the integration of the XC potential.

Previous works have shown that meta-GGA potential
energy surfaces for dispersion bound complexes can exhibit
spurious oscillations using too small integration grids [34],
and that reaction energies can be severely impacted by the
choice of grid as well [36]. The same issue is also inherited
by some molecular properties such as nuclear gradients, and
hence analytic geometry optimizations are also influenced
by the choice of grid. The derivative of the SCAN energy
density for atoms can exhibit oscillations near & & 1 due to its
functional form [37], implying a more dense grid is required
for accurate integration.

The numerical grids used to evaluate the DFT contributions
to the energy are built by combining angular and radial grids, so
we studied the impact of convergence in both grids separately.
For a given angular integration grid, slow convergence of the
total energy and nuclear gradient with respect to the radial
integration grid was encountered. To accurately integrate the
SCAN potential, a larger number of radial points are needed in
TURBOMOLE compared to previous functionals such as TPSS.
Using a converged radial grid, however, the convergence of
the angular grid is typically much faster, and sufficiently
accurate results can be obtained using grid 4 in TURBOMOLE,
which is only slightly larger than the default (grid m3). We
report more detailed information on the grid dependence in
the supplemental material [38], the conclusions of our tests
being that energy differences are less sensitive to the choice
of grid than nuclear gradients. Therefore, in practice a very
large radial grid is only required when computing molecular
properties, and not necessarily for computation of typical
reaction energies, which can be adequately described using
a slightly augmented radial grid.

B. London dispersion interaction

A natural formalism to obtain long-range corrections from
DFT is the adiabatic fluctuation dissipation theorem [39,40],
from which more approximate schemes can be obtained as
discussed in two recent review articles on modern London
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dispersion corrections [41,42]. One such method is the
VV10 nonlocal density kernel by Vydrov and Van Voorhis
[25,43-45]. In their method, the VV 10 kernel is parametrized
using only the local density and its reduced gradient. Two
parameters are needed to determine the model: the first (C)
is adjusted to reproduce reference dispersion coefficients at
large distances, and the second () is used to damp the VV10
contribution at short distances. The parameter b can be used
to adjust the VV 10 kernel to any semilocal DFA [46], while C
is kept at its original value [25].

An even more efficient alternative to VV10 is the D3
scheme, which is formulated from a partitioning of the
molecular polarizability tensor. The most natural fragments in
amolecule are the individual atoms since, due to their spherical
symmetry, only an isotropic dynamical polarizability, a(iw),
has to be considered. Thus, the correlation energy between
two atoms (A and B) can be expressed by the Casimir-Polder
relation [47]

AB
6
TaB

AB _
E” =

- @)
Cg‘B =;/0 dwas(im)ap(iw).

This is the leading-order fluctuating-dipole—fluctuating-dipole
with the typical dependence on the atomic distance r45. The
most significant difference between the various dispersion
correction schemes is the way in which the Cg coefficients
are estimated [48-53]. For the D3 scheme, the dynamic
polarizabilities of hydrated atoms are calculated via time-
dependent DFT for reference systems, and a modified Casimir-
Polder integration [similar to Eq. (4)] yields the atom-pair
C{® value [24]. Higher-order dipole-quadrupole pair terms
and Axilrod-Teller-Muto-type [54,55] three-body terms are
calculated via recursion relations and averages, respectively,
from the corresponding Cg coefficients. The importance of
many-body dispersion interactions was analyzed recently by
various groups [56-58].

In this work, the D3 scheme is always used, including
the three-body term. Together, the D3 contribution to the
interaction energy is

1 pairs CAB
D D) Sk v o

n
-
n=6,8 A, B AB

1 triples CgABC(] + 3cosB4 cosBp cosOc)
6 ipc rasc
x fo(ragc). )

The damping functions f¢ are introduced to combine the
D3 dispersion interaction with the semilocal correlation
contribution from the DFA. The three-body term depends
on the atom triangle with angles 64,p,c and geometric mean
distance r4 pc. The two-body damping (fgl ¢) can be used either
with a zero damping (one free parametér rs¢) or a rational
(Becke-Johnson) damping (two free parameters a; and a)
[59]. Additionally, the dipole-quadrupole Cg terms can be
scaled by a parameter sg, which improves the interpolation
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between various DFAs with substantially different behavior
in the medium correlation regime. Comparisons of the D3
with the VV10 dispersion correction revealed very similar
accuracies [60,61]. We thus expect very similar results for
SCAN-D3 and SCAN-VV10. While the VV10 scheme can
adjust better to unusual electronic structures with strong
charge-transfer character, the D3 dispersion coefficients are
typically better for organic molecules with residual error in
the long-range below 5% [23]. Furthermore, the three-body
term is available with highly efficient analytical derivatives,
which is important for large and dense systems [62], and we
will therefore mainly report results for the SCAN-D3 method
throughout this study.

We have trained the damping functions using the S66x8
[63] benchmark set. It consists of 66 small- to medium-
sized molecular dimers at eight center-of-mass distances
with coupled cluster single, double, and perturbative triple
reference energies at the estimated single-particle basis-set
limit, CCSD(T)/CBS(est.) [64]. This set can be simultaneously
used to test noncovalent interaction energies and equilibrium
distances as recognized recently by several groups [65-67]. We
interpolate the potential surfaces and extract the equilibrium
minimum to compare with equilibrium binding energies and
equilibrium distances at the CCSD(T) level. We fit the damping
parameter by minimizing the weighted absolute relative
deviations from the reference (6 E + 10§ R). For comparison
purpose, we additionally report errors on the standard S66 set
in the ESI.

A summary of the optimized damping parameter for the
D3 scheme in both damping variants and the VV10 scheme
is given in Table I. We give the relative absolute deviations

TABLE I. Optimized (dimensionless) damping parameter of the
D3 and VVI10 dispersion correction for the SCAN functional in
comparison with other methods.

SCAN MO6L TPSS PBE PBEO
Plain (without correction)
SE* % 22.7 14.4 56.5 45.7 43.6
SR"/% 1.2 0.5 14.5 8.1 73
D3 (default rational damping [59])
S8 0° 1.944 0.788 1.218
a 0.538¢ 0.454 0.429 0.415
a; 5.4200 4.475 4.441 4.859
SE*% 7.7 5.8 7.6 10.1
SR"/% 0.8 1.7 1.2 1.1
D3(0) (zero damping [24])
g 0° 0° 1.105 0.722 0.928
rSe 1.324¢ 1.581 1.166 1.217 1.287
SE % 7.3 9.2 6.3 94 12.9
SR®/% 1.0 0.5 1.5 1.7 0.9
VV10 (zero-type damping [25])
b 14.0¢ 18.9 5.0 6.4 6.0
SE*% 8.4 8.0 6.3 8.3 15.6
SR"/% 0.9 0.9 1.2 1.2 0.8

“Mean absolute rel. deviation of the S66x8 equilibrium energies [63].
YMean absolute rel. deviation of the S66x8 equilibrium distances [63].
“Value not fitted.

9This work.
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from the S66x8 reference minima and compare with the MO6L
and TPSS meta-GGAs, the PBE GGA, and its PBEO hybrid
variant. Because the SCAN functional can cover medium-
range correlation to a high degree (similarly to MO6L), the
dipole-quadrupole term is set to zero. Typical deviations of
the various methods are 5-10 % for the interaction energy
and 0.5-2 % for the center-of-mass distance. SCAN-D3
yields a good compromise of 8% and 1% error for the
energy and the distance, respectively. For the intrinsically
very attractive Minnesota functionals, the parameter fit of the
rational damping function is not stable. This double counting
problem associated with the different damping functions was
recently investigated in detail [68]. SCAN also covers a
large amount of medium-range correlation, but both damping
variants can be successfully applied with very similar accuracy.

Because the rational damping avoids artificial repulsive
forces, this is typically the preferred variant. We tested SCAN
with both damping variants and obtained very similar results,
therefore we give only the results for the recommended
rational damping scheme. If not stated otherwise, the defaults
mentioned here are used throughout this study.

III. RESULTS

A. Geometries

The analysis of molecular and condensed phase geometries
is separated in the following way and closely follows the
strategy in Refs. [66—69]: first the covalent bond distances of
different element classes are investigated (Sec. IIT A 1), then
we highlight the interplay between covalent bond distances
and medium-range correlation in medium-sized molecules
(Sec. IITA 2).

1. Bond distances

Though the covalent bonds are mainly determined by the
semilocal xc contributions from the DFA, we use the methods
with London dispersion interaction, as the correction scheme
should not deteriorate the covalent bonds. To put the results
into some broader perspective, we compare with results from
MO6L [9], TPSS-D3 [8], PBE-D3 [5], and PBEO-D3 [70]. The
MO6L meta-GGA is used as the most prominent Minnesota
DFA and applied without further correction as recommended
by Truhlar and co-workers [71]. In the past years, Grimme
and co-workers established the TPSS-D3 meta-GGA for
computing reliable geometries at rather low computational
cost[72,73]. PBE-D3 is included in the comparison as the most
widely applied DFA in the solid-state community. Recently,
extremely accurate geometries computed with the dispersion-
corrected hybrid functional PBEO-D3 have been reported [66].
Due to the nonlocal Fock exchange, the hybrid PBEO-D3 has
significantly higher computational costs compared to the other
meta-GGA-based methods.

We report the comparison of experimental and calculated
ground-state equilibrium bond distances R, (in pm) for 35 light
main group bonds (LMGB35), 11 heavy main group bonds
(HMGBI11), and 32 3d transition-metal complexes (TMC32)
(see Fig. 1). The light main group bonds are sufficiently accu-
rate with all applied methods, with mean absolute deviations
(MADs) between 0.5 and 1.0 pm. Compared to the plain

PHYSICAL REVIEW B 94, 115144 (2016)

LMGB35

HMGBI11 TMC32

FIG. 1. Mean absolute deviations of various methods for different
bond distances separated into light main group bonds (LMGB35),
heavy main group bonds (HMGB11), and transition-metal complexes
(TMC32). For SCAN, we show both the plain functional (gray bar)
and the dispersion-corrected variant in order to highlight the influence
of the long-range correction.

Hartree-Fock (HF) mean-field method, which has an MAD of
2.8 pm, all semilocal DFAs lead to a substantial improvement.
The base line for a good method on the HMGBI11 set can
again be defined by the HF MAD of 2.2 pm. While SCAN-D3
and PBEO-D3 provide excellent results with MADs slightly
below 1.0 pm, the error increases to 1.9, 2.4, and 3.6 pm for
TPSS-D3, PBE-D3, and MO6L, respectively. The TMC32 set
of 3d transition-metal complexes is particularly interesting as
its description with hybrid functionals is rather problematic
[72]. This can be seen by the bad performance of HF with
MAD larger than 12 pm. In contrast, meta-GGAs are the ideal
choice as they do not suffer from the inclusion of HF exchange
for (organo)metallic systems and implicitly account for static
correlation effects. TPSS-D3 is second only to PBEO-D3,
and the 2.2 pm MAD of SCAN-D3 is very reasonable,
outperforming MO6L, PBE, and the uncorrected SCAN. Due
to the larger systems, the impact of the dispersion interaction
is significant. The error spread of SCAN-D3 drops by a factor
of 2.4 when including the dispersion correction. This indicates
that the D3 scheme not only leads to a systematic shift (more
strongly bound systems with shorter bonds), but also to an
overall systematic improvement.

Concerning the bond lengths, the new SCAN-D3 functional
provides very promising results. It clearly outperforms the
PBE-D3 and TPSS-D3 functional for all main group bonds
and is of similar quality for transition-metal complexes.
Compared to the popular MO6L, the bond lengths seem to
be more reliable, especially for heavier elements as seen in the
HMGB11 benchmark set.

2. Rotational constants

To account for zero-point vibrational effects in the deter-
mination of molecular structures, gas-phase rotational spectra
can be measured very accurately at low temperature. From
these spectra, the rotational constants, corresponding to inverse
moments of inertia of the molecule, can be extracted and
used to infer structural information. The accuracy of these
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SCA|N-D3
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FIG. 2. Normal distribution of the relative errors in the computed
rotational constants B, for the ROT34 benchmark set with various
theoretical methods. HF and MP2 results are taken from Ref. [73].
The inset shows the molecules of this set.

measurements makes them an ideal benchmark observable
to compare with high-level quantum-chemical calculations
[74] and density-functional approximations [73,75]. Very
accurate, complementary theoretical predictions can help in
assigning molecular conformations from rotational microwave
spectroscopy.

The rotational constants of small molecules can be cal-
culated with an MAD of only 0.04% using well-converged
coupled-cluster methods [74]. For molecules with more than
a few heavy atoms, this is a tremendous computational
effort and it is important to have more efficient methods.
A recently published set of 12 medium-sized molecules has
been corrected for anharmonic zero-point effects and can be
directly compared to free optimizations [76]. MADs below
0.5% were obtained with very few methods, all incorporating
virtual excitations such as MP2 [73], except for PBE0Q-D3,
which is even better than MP2 [66].

In Fig. 2, the deviations of rotational constants with the
reference computed with SCAN-D3 are shown alongside
comparable methods. The accuracy of both SCAN and MO6L
meta-GGAs is excellent and exceeds the accuracy of all
other tested (meta-)GGAs thus far. Since SCAN already
covers medium-range correlation to a high degree, the impact
of the dispersion correction is smaller, but still noticeable,
compared to the more repulsive TPSS or PBEQ. Apparently, it
is possible to compute highly accurate molecular geometries
using neither the virtual excitation space (dynamic correlation)
nor the occupied orbital space in a nonlocal sense (Fock
exchange).

MOG6L yields highly accurate geometries, but the corre-
sponding systematic shifts are small and already indicate an
overbound system with too dense molecular structures and
too short noncovalent distances. In contrast, SCAN yields
systematically too large molecular structures and noncovalent
distances. The addition of a dispersion correction not only
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removes the systematic underbinding for SCAN, but it also
reduces the error spread on all analyzed sets except for LMGB.

B. Noncovalent interactions

As the simplest model systems for weak van der Waals
interactions, we analyzed Ne,, Ar,, and Kr, with the
full SCAN(-D3) functional and an exchange-only variant
(SCANKX) [77,78]. Potential curves are reported in the ESI.
While we see some deviations for the neon dimer, the potentials
for the argon and krypton dimer are encouraging, i.e., SCANx
closely reproduces the HF reference potential, and SCAN-D3
is in excellent agreement with CCSD(T). More problematic is
the interaction of rare-gas atoms with a positive point charge,
which probes the polarizability. Here, the SCAN density
appears to be too polarizable with systematic deviations from
the reference. This may partly explain some problems in the
description of strong hydrogen bonds discussed below.

1. Molecular dimers

We discuss two standard benchmark sets introduced by
Hobza and co-workers. The first is the very well-known and
widely used S22 set [79-81] comprising 22 medium-sized
molecules, mostly organic complexes in their equilibrium
structure. This set covers hydrogen bonded as well as typical
vdW complexes, and it has become the de facto standard in
the field of theoretical noncovalent interaction calculations.
Significantly larger complexes are compiled in the L7 test set
[82], and we use the more consistent DLPNO-CCSD(T)/CBS*
interaction energies as a reference [83].

The statistical deviations from the references are given in
Table II. When comparing the different test sets, one has
to keep in mind that the mean binding energies are 7.3 and
16.7 kcal/mol for S22 and L7, respectively.

TABLEII. Deviations of intramolecular interaction energies from
the CCSD(T) references for the S22 and L7 NCI benchmark sets
(1 kcal/mol = 0.0434 V).

Measure SCAN SCAN MO6L TPSS PBE PBEO
-D3 -D3 -D3 -D3
S22 (binding energy in kcal/mol)*
MD" —-0.4 0.6 0.8 0.0 -01 =03
MAD* 04 0.9 0.8 04 0.5 0.5
SD¢ 0.7 1.1 0.5 0.6 0.7 0.7
MAX® 2.6 2.9 1.7 1.5 1.9 1.8
L7 (binding energy in kcal/mol)
MD 1.2 7.9 3.0 0.9 2.1 1.4¢
MAD 2.5 7.9 3.0 1.1 2.6 1.6
SD 3.0 53 24 1.2 29 1.2
MAX 4.7 15.6 6.3 2.8 6.7 3.0

2See Ref. [79] for details.

"Mean deviation, >0 denotes underbound systems.
“Mean absolute deviation.

dStandard deviation.

¢Maximum absolute deviation.

fSee Refs. [82,84] for details.

£Values replaced by PW6B95-D3 [82].
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We confirm that TPSS-D3 is one of the most accurate
nonhybrid DFAs for noncovalent binding energies of molec-
ular complexes. The MADs of 0.4 and 1.1 kcal/mol for
the S22 and L7 sets are excellent, below 7% of the mean
binding energy. The dispersion-corrected PBE and PBEO
functionals also perform well for these sets. The plain meta-
GGA MO6L has substantially larger errors, and the MADs
are approximately double compared to TPSS-D3. While the
errors could be reduced with the D3(0) scheme, this would
simultaneously deteriorate the accurate geometries. Consistent
with the geometry analysis, SCAN is more repulsive compared
to MO6L and the performance is even slightly worse, especially
for the L7 test set. Addition of the D3 correction significantly
improves the SCAN results, yielding a MAD for the L7 set
of 2.5 kcal/mol (15% of the mean binding), which is still not
quite as good as some of the other methods. It has been noted
several times in the literature that for the highest accuracy on
noncovalent energies between molecules, the D3 and related
semiclassical dispersion corrections have to be combined with
intrinsically more repulsive DFAs [85,86]. However, it is still
notable that SCAN can profit from the dispersion correction,
and overall it yields reasonably accurate noncovalent binding
energies.

2. Molecular crystals

Molecular crystals are an increasingly important class of
materials that require an accurate description from efficient
methods. This is especially important for “in silico” crystal
structure prediction [87—-89].

To investigate this class of systems, we analyze the X23
set of (mostly) organic molecular crystals [90,91] that can
be considered as a periodic extension of S22 where the
asymptotic parts of the noncovalent interaction may dominate.
To decrease the computational effort, we compiled a subset
consisting of the crystals cyclohexanedione, acetic acid,
adamantane, benzene, CO,, cyanamide, ethylcarbanate, oxalic
acid, pyrazine, pyrazole, succinic acid, and uracil. The subset
is constructed to maintain the MAD of TPSS-D3 for both the
crystal density and the lattice energy within 0.5%.

The statistical performance is summarized in Table III, and
the potential energy surfaces of two selected crystals are shown
in Fig. 3. We show the potential energy surface (PESs) of
unpolar benzene and the o polymorph of oxalic acid that
contains significant hydrogen bonds. As such, the relative
impact of London dispersion on the binding energy should
be reduced for oxalic acid, while that from electrostatic and
induction effects will be more prominent. The PES of the
benzene crystal in Fig. 3(a) shows again that both SCAN and
MOG6L already cover some part of the medium-range dispersion
interaction. While the corresponding potentials show a clear
minimum, the crystal is still underbound. The minimum of
SCAN-D3 is very close to the reference after adding the D3
correction and is within a “chemical accuracy” of 1 kcal/mol,
similar to the TPSS-D3 and PBEO-D3 results. The equilibrium
is more dense by about 3% than experimentally observed.

The oxalic acid crystal is one of the crystals within the
X23 set with the strongest hydrogen bond contributions. It
is therefore much more challenging for a semilocal DFA to
describe the induction effects accurately, as shown in Fig. 3(b).
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TABLE III. Deviations of unit-cell volumes and interaction
energies from the back-corrected exp. reference for the X23 organic
crystal set.

Measure SCAN-D3 SCAN MO6L TPSS-D3
X23 (unit cell volume in %)*
MDP —42 —0.5 —3.7 1.0
MAD* 42 22 5.1 2.8
SD¢ 1.6 2.5 4.1 4.0
MAX® 6.6 4.7 8.4 15.0
X23 (Lattice energy in kcal /mol)
MD 1.5 -3.7 —-12 -0.7
MAD 1.9 4.0 1.7 1.1
SD 2.0 32 1.7 1.1
MAX 5.0 10.5 34 2.2

4See Refs. [66,90,91] for details.

®Mean deviation, >0 denotes too large distances.
¢Mean absolute deviation.

dStandard deviation.

¢Maximum absolute deviation.

MOG6L is still underbound, but SCAN already computes a
lattice energy close to the reference. Adding the D3 correction
leads to a 4 kcal/mol overbinding with a significantly too
small unit-cell volume. Similarly to PBE, SCAN seems

(a) N reference —— MO6L - - -X--
4l SCAN-D3 TPSS-D3 —+- -
:\\ SCAN — % —  PBEO-D3 - —¢--
(-
H: £
g -
© L -
2 _gf
w EoNS ST
[ L TS AR L L L —
—12f
_16;“\HH\HH\HH\HH\HH\HH\
(b) 90 100 110 120 130 140 150
_g '—7\‘. benzene
iRy s W
10 el aetl]
) =y,
T = <
S —16+ oxalic acid _..-
E: [ N\ e ;';_/’
£ 200\ N T 2T
W S F-=.
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_ Lo 1w b L e
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Vv,
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FIG. 3. Lattice energy of the (a) benzene and (b) oxalic acid
o crystal based on constrained volume optimizations (TPSS-D3
level) with single-point evaluations of various dispersion-corrected
DFAs. For each method, the cross shows the position of the energy
minimum, and the arrow indicates the effect of the added dispersion
correction.
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to overpolarize hydrogen bond networks, leading to a too
attractive induction interaction. Adding the physically correct
dispersion interaction enhances the overbinding tendency,
which leads to the comparably poor performance for the
oxalic acid crystal. A similar effect is seen for water clusters
(WATER27 [92]; see below) and ice polymorphs (ICE10 [93]).
Another study recently reported analogous behavior for SCAN
on another set of ice polymorphs [94]. TPSS-D3 has smaller
errors and is even bound too weakly, and as expected the best
results are computed with the hybrid PBEO-D3.

Benzene and oxalic acid are two borderline cases as the
other X23 systems are typically in between them, as shown by
the statistics given in Table III. The SCAN-D3 MAD of 4.2%
for the unit-cell volumes is worse compared to the uncorrected
SCAN result. We attribute this mainly to the intrinsic errors
of SCAN for hydrogen-bonded systems. At the same time, the
standard deviation is slightly decreased, indicating that though
the D3 contribution is physically meaningful, the final SCAN-
D3 method systematically underestimates the cell volumes.
The geometries at the MO6L level are systematically too
dense by about 3.7%, leading to an MAD larger than 5%. An
additional dispersion correction would increase this systematic
error even further. TPSS-D3 yielded accurate unit-cell volumes
with an MAD below 3%, the largest error occurring for the CO,
crystal, which is problematic for all dispersion-corrected DFA
methods. The SCAN-D3 lattice energies have a reasonable
MAD of 1.9 kcal/mol, the dispersion correction clearly
improving the performance and lowering the MAD of SCAN
by more than 50%. While the performance of MO6L is similar,
TPSS-D3 is significantly more accurate with an MAD close to
1 kcal/mol. Other more repulsive DFAs have been shown to
yield analogous, highly accurate lattice energies on this X23
set, the most successful ones being PBEO-D3, PBEO-MBD,
and BS6PBE-XDM [62,90,91].

C. Thermochemistry and Kinetics

In this final section, we analyze the performance of the
SCAN-D3 functional for general main group chemistry. In
2011, Goerigk and Grimme compiled a meta database of
several benchmark sets, dubbed general main group thermo-
chemistry, kinetics, and noncovalent interactions (GMTKN30)
[28,95]. It consists of three main subgroups testing basic
properties (e.g., atomization energies, ionization potentials,
electron and proton affinities, and reaction barriers), reac-
tion energies (including isomerizations), and both intra- and
intermolecular noncovalent interactions of light and heavy
molecules, including molecular conformations. This set has
been extensively used to benchmark the large menagerie of
DFAs from all different functional classes [96]. A transferable
scheme to weight the different sets has been designed to com-
pute an overall weighted mean absolute deviation (WTMAD),
enabling a direct comparison of all methods. We compute the
full GMTKN30 database with SCAN(-D3) and compare it to
the meta-GGAs MO6L and TPSS-D3 and the hybrid functional
PBEO-D3 in Table IV. The WTMAD:s of the three subgroups
are shown in Fig. 4.

The effect of dispersion on the basic properties of mostly
small molecules is minor. The SCAN-D3 WTMAD of
6.7 kcal/mol is very good and in between the accuracy of
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TABLEIV. Mean absolute deviations (MADs, in kcal/mol) for all
30 subsets of the GMTKN30 database. Errors for MO6L, TPSS-D3,
and PBE-D3 PBE(O-D3 are taken from Ref. [96]. For comparison,
the overall WTMAD for the local spin density approximation is
11.9 kcal/mol [96].

Subset SCAN SCAN MO6L TPSS PBE PBEO
-D3 -D3 -D3 -D3
Basic properties
MBO08-165 8.1 7.9 133 9.5 9.2 8.6
W4-08 4.8 4.8 4.6 53 130 4.0
G21IP 4.9 49 45 4.0 39 3.7
G21EA 3.6 3.6 4.0 22 34 2.5
PA 32 32 4.6 4.7 22 2.8
SIE11 10.2 10.0 10.1 11.6 124 7.8
BHPERI 3.8 32 35 3.1 42 1.6
BH76 7.9 7.8 3.8 9.0 95 44

WTMAD (bp) 6.7 6.6 7.9 7.5 9.1 5.7
Reaction energies

BH76RC 3.7 3.7 3.1 3.7 44 2.5
RSE43 1.9 1.9 3.1 22 33 1.8
O3ADD6 7.4 7.1 34 4.4 5.0 5.7
G2RC 6.8 6.6 5.9 6.8 6.5 6.8
AL2X 2.9 22 14 22 23 1.9
NBPRC 29 2.4 39 1.7 23 33
1SO34 1.3 1.4 2.2 2.1 1.6 1.6
ISOL22 42 4.6 7.4 7.0 5.6 29
DC9 8.6 8.8 11.5 9.7 10.1 9.2
DARC 2.6 3.0 8.0 6.6 43 3.1
ALK6 38 34 8.1 33 3.6 3.6
BSR36 1.7 32 6.0 6.3 48 4.6

WTMAD (re) 2.9 3.2 4.8 4.4 4.0 34
Noncovalent interactions

IDISP 32 5.9 6.6 4.5 4.8 35

WATER27 9.4 7.4 2.8 4.9 8.6 6.4

S22 0.44 0.93 0.80 032 048 0.57
ADIM6 0.23 1.68 028 040 058 0.36
RG6 0.19 0.27 043 0.04 005 0.03
HEAVY28 0.28 0.40 065 020 024 0.17
PCONF 0.50 1.13 0.97 1.10 151 094
ACONF 0.16 0.32 046 0.05 0.09 0.10
SCONF 0.37 0.27 039 068 044 0.25
CYCONF 0.47 0.42 040 082 0.84 0.5

WTMAD (nci) 1.3 1.7 1.3 1.2 1.6 1.2
WTMAD (all) 3.9 4.1 4.9 4.6 5.2 3.6

a typical GGA and a hybrid functional. Of this subgroup,
the mindless benchmark (MBO08-165) consisting of artificial
molecules stands out. The set has been designed to explore the
breadth of chemical space and specifically analyze the DFAs
far away from any training set to test their robustness.

The WTMAD of SCAN-D3 for the reaction energies is
excellent at 2.9 kcal/mol and surpasses any other meta-GGA
to date. Even typical hybrid functionals like PBEO-D3 and
B3LYP-D3 are worse with WTMAD:s of 3.4 and 4.7 kcal /mol,
respectively. The SCAN results for isomerization (ISO34,
ISOL22) are particularly outstanding, and in the subgroup of
reaction energies the D3 dispersion correction leads to only
small improvements.
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FIG. 4. Weighted mean absolute deviations (WTMADs) for the
three categories (basic properties, reaction energies, and noncovalent
interactions) of the large GMTKN30 database composed of 30
individual benchmark sets given in Table IV [28,96]. For SCAN,
we show both the plain functional (gray bar) and the dispersion-
corrected variant in order to highlight the influence of the long-range
correction.

For the group of noncovalent interactions, the dispersion
correction has the largest impact by reducing the SCAN WT-
MAD from 1.7 to 1.3 kcal/mol. Compared to other functionals,
this reduction is moderate, and especially intrinsically more
repulsive DFAs can reduce the WTMAD below 1 kcal/mol
(e.g., revPBE-D3 [97]). The most problematic systems are
the water clusters in WATER27 where the plain SCAN
functional already overestimates the binding energies. This
is then enhanced by the attractive dispersion contribution,
resulting in the worst performance of the selected methods.
Hao et al. applied the meta-GGA made simple (MGGA-MS)
with a D3 correction to the GMTKN30 set, and they found
that it delivers a top-notch performance for WATER27, with an
MAD below 2 kcal/mol [98]. This illustrates that it is possible
to describe hydrogen bonds in water accurately via a nonem-
pirical construction. Similar problems for water-containing
systems have been recognized for the PBE functional [93],
and they are probably connected to an overpolarization
problem in strong hydrogen bond networks related to intrinsic
self-interaction error. On the other hand, SCAN-D3 is very
accurate for molecular conformations with MADs below
0.5 kcal/mol for all four sets (PCONF, ACONF, SCONF, and
CYCONF).

Overall, SCAN-D3 performs very well for the GMTKN30
with a WTMAD of 3.9 kcal/mol, one of the lowest for the
meta-GGA class. Interestingly, SCAN-D3 delivers superior
performance compared to the MO6L functional even though
parts of GMTKN30 are included in the training set of the
Minnesota functionals. A similar picture can be seen when
comparing error statistics of molecular and atomic energies
with the method of atomic equivalents. The root-mean-square
errors on 592 species are 7.5, 4.7, and 4.2 kcal /mol for LSDA,
MOG6L, and SCAN, respectively [99], reproducing closely the
trend shown by the GMTKN30 database.
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IV. CONCLUSIONS

In this work, we have combined the SCAN meta-GGA
with a long-range correction for London dispersion inter-
actions. We provided default damping parameters for the
D3 scheme with zero and rational damping, and VV10
dispersion corrections. The resulting SCAN-D3 method was
tested on a broad set of systems with the main focus on
accurate geometries, as this represents the most advantageous
aspect of the meta-GGA functional class. Even considering
hardware improvements, DFT will be the leading method to
compute ab initio equilibrium structures in the foreseeable
future.

The molecular geometries of SCAN-D3 exceed the accu-
racy of all other (meta-)GGAs thus far, while noncovalent
binding energies are good (L7, X23) to very good (S22),
producing high-quality potential energy surfaces of molecular
dimers and organic crystals. Due to the self-interaction error
intrinsic in semilocal functionals, SCAN, and thus SCAN-D3,
overestimates the strength of hydrogen bonds. Thermochem-
istry and kinetics were shown to be in excellent agreement with
reference values, as demonstrated on the large GMTKN30
database, resulting in a WTMAD of 3.9 kcal/mol. Overall,
SCAN-D3 delivers accurate properties that are close to the
results of more computationally demanding methods. Impor-
tantly, this has been achieved by a nonempirical semilocal
functional. Overall, SCAN-D3 outperforms both the empirical
MOG6L and the most widely used PBE-D3 functionals in about
80% of the considered test sets.

The long-range dispersion correction to SCAN is most
important in systems that bind through long-range dispersion,
such as the benzene crystal and the L7 set of large molecular
complexes. As a consequence of the lack of structure in the
long-range correction, SCAN without D3 can be reasonably
good for the geometry, but not the binding energy, of even the
benzene crystal.

V. COMPUTATIONAL DETAILS

For all molecular computations, we used a developer
version of TURBOMOLE 7.0 [100]. The MO6L functional is
computed via the XCfun interface [101]. We use converged
single-particle basis sets of quadruple-¢ quality (def2-QZVP)
[102,103]. Additional diffuse functions are used for the WA-
TER27 and G21EA benchmark sets [104]. For heavy elements,
these are combined with the Stuttgart-Dresden effective core
potentials, which effectively include scalar relativistic effects
[105]. Only some hybrid PBEO results that have been taken
from previous work were evaluated with the slightly smaller
def2-TZVP basis. For the semilocal exchange-correlation part,
the numerical quadrature grids m4 (4 for SCAN) are used.
For geometry optimizations with SCAN, the radial grid size
must be substantially increased to radsize 60 or 70; see
the supplemental material [38]. The RI-J approximation was
used [106—108] with default auxiliary basis sets [109]. A
standard convergence threshold for SCF convergence (1077
a.u.) and tight thresholds for geometry convergence (10~* a.u.)
were applied. Solid-state calculations were conducted with a
modified VASP5.3 program suite [110,111]. To approach the
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single-particle basis-set limit, a projector-augmented plane-
wave (PAW [112,113]) basis set with a large energy cutoff of
1000 eV was applied. The PBEO hybrid single-point energies
[Fig. 3(b)] are calculated with a smaller energy cutoff of
500 eV. The Brillouin zone is sampled with dense k grids of
approximately 1/40 Al generated via the Monkhorst-Pack
scheme. For efficient geometry relaxations and three-body
gradients of the D3 scheme in periodic boundary conditions,
we use a developer version of the CRYSTALI4 program
[114].

In the current TURBOMOLE implementation, the require-
ments of SCAN’s exchange-correlation functional on the
numerical integration grid are unusually high, leading to an
increased computational cost compared to TPSS by a factor of
2-10. However, SCAN has decreased numerical problems in

PHYSICAL REVIEW B 94, 115144 (2016)

VASP, as it only requires slightly denser Fourier grids compared
to the PBE GGA.
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