

Van-der-Waals interactions: Incorporation in the DFT framework

Gerit Brandenburg <g.brandenburg@ucl.ac.uk> | 6th of March 2018

PHASG473 - UCL - ELECTRONIC STRUCTURE METHODS FOR MATERIALS MODELLING

[±]UCL

Nonloal density based vdW

2 Semi-classical coarse-grained vdW

3 Method overview

Nonloal density based vdW

Semi-classical coarse-grained vdW

Method overview

Dr. Brandenburg - London Centre for Nanotechnology - University College London

6th of March 2018 2/23

Many good dispersion corrections exist

local electronic structure often sufficiently accurate by effective mean field

combine with vdW correction (long-range correlation)

Nonloal density based vdW Semi-classical coarse-grained vdW	Method	d overview
[2] K, Berland, V. Cooper, K. Lee, E. Schröder, T Thonhauser, P. Hyldgaard, B. Lundqvist, Rep. Prog. Phy	ys. 78 066501 (2015).	
^[1] S. Grimme, A. Hansen, <u>JGB</u> , C. Bannwarth, <i>Chem. Rev.</i> 116 , 5105 (2016)		

Outline of talk

[±]UCL

Nonloal density based vdW

2 Semi-classical coarse-grained vdW

3 Method overview

Nonloal density based vdW

Semi-classical coarse-grained vdW

Method overview

Dr. Brandenburg - London Centre for Nanotechnology - University College London

6th of March 2018 4/23

Local model for response function

density response function for homogeneous electron gas

$$\chi(\omega) = rac{1}{4\pi} rac{\omega_p^2}{\omega_p^2 - \omega^2}$$

- plasmon frequency $\omega_{
 m p}=\sqrt{4\pi
 ho}$
- use local approximation $\omega_{
 ho}({f r})=\sqrt{4\pi
 ho({f r})}$
- for non-overlapping densities in r and r'

$$E_{\rm c}^{\text{DD/ALL}} = -\frac{3}{32\pi^2}\int d\textbf{r}\,d\textbf{r}' \frac{1}{|\textbf{r}-\textbf{r}'|^{12}}\frac{\omega_{\rho}(\textbf{r})\omega_{\rho}(\textbf{r}')}{\omega_{\rho}(\textbf{r})+\omega_{\rho}(\textbf{r}')}$$

general form of density based long-range correlation energy

$$\textit{E}_{\rm c} = -\frac{1}{2}\int d\textbf{r}\,d\textbf{r}'\rho(\textbf{r})\Phi(\textbf{r},\textbf{r}')\rho(\textbf{r}')$$

Nonloal density based vdW

Semi-classical coarse-grained vdW

Method overview

Dr. Brandenburg - London Centre for Nanotechnology - University College London

6th of March 2018 5/23

Modern nonlocal vdW density functionals

[±]UCL

Class 1:

- vdW-DF0, vdW-DF1, vdW-DF1, optPBE-vdW, optB86b-vdW
- generalize DD/ALL form to seamlessly interpolate between long-range and short range regime
- fulfill local density limit

Class 2:

- VV09, VV10
- introduce empirical parameter (C, b) to simplify nonlocal kernel

$$egin{aligned} \Phi(\mathbf{r},\mathbf{r}') &= - \, rac{1}{2gg'(g+g')} \ g = &g(\mathbf{r},\mathbf{r}') = \sqrt{C|rac{
abla
ho(\mathbf{r})}{
ho(\mathbf{r})}|^4 + rac{\omega_
ho(\mathbf{r})}{3}} |\mathbf{r}-\mathbf{r}'|^2 + b rac{3\pi}{2} \left(rac{
ho}{9\pi}
ight)^{1/6} \end{aligned}$$

Nonloal density based vdW

Semi-classical coarse-grained vdW

Method overview

Dr. Brandenburg - London Centre for Nanotechnology - University College London

6th of March 2018 6/23

[±]UCL

1 Nonloal density based vdW

2 Semi-classical coarse-grained vdW

3 Method overview

Nonloal density based vdW

Semi-classical coarse-grained vdW

Method overview

Dr. Brandenburg – London Centre for Nanotechnology – University College London

6th of March 2018 7/23

Coarse-graining to atomic contributions leads to significant simplifications

coarse-grain ACFDT to fragment contributions

$$E_{\text{disp}}^{AB} = -\frac{1}{2\pi} \int d\omega \int d\mathbf{r}_a d\mathbf{r}'_a d\mathbf{r}_b d\mathbf{r}'_b \frac{\chi(\mathbf{r}_a, \mathbf{r}'_a, i\omega)\chi(\mathbf{r}_b, \mathbf{r}'_b, i\omega)}{|\mathbf{r}_a - \mathbf{r}'_a||\mathbf{r}_b - \mathbf{r}'_b|}$$

- assume vanishing overlap to factorize response function
- integrate fragment response to dynamic polarizabilities

$$lpha_{ij}(i\omega) = \int \mathrm{d}\mathbf{r} \mathrm{d}\mathbf{r}' \, \mathbf{r}_i \mathbf{r}_j' \chi(\mathbf{r},\mathbf{r}',i\omega)$$

expansion of Coulomb operator in multipoles

$$E_{ ext{disp}}^{AB} = -rac{2}{\pi}\sum_{egin{smallmatrix}lpha,eta\ \gamma,\delta} \left(
abla_{lpha}
abla_{eta}rac{1}{R}
ight)\left(
abla_{\gamma}
abla_{\delta}rac{1}{R}
ight)\int\mathrm{d}\omega\,lpha_{lphaeta}^{A}(i\omega)lpha_{\gamma\delta}^{B}(i\omega)$$

^[3] H. B. G. Casimir. D. Polder, *Phys. Rev.* 73, 360 (1948)

Nonloal density based vdW

Semi-classical coarse-grained vdW

Method overview

Dr. Brandenburg - London Centre for Nanotechnology - University College London

6th of March 2018 8/23

AUCL

Spherical averaging and higher order terms beyond dipole-dipole

spherical averaging of dyn. polarizabilities

$$E_{ ext{disp}}^{AB} = - \underbrace{rac{3}{\pi} \int \mathrm{d}\omega \, lpha_A(i\omega) lpha_B(i\omega)}_{C_6^{AB}} imes rac{1}{R_{AB}^6} + \mathcal{O}(R^{-8})$$

 beyond dipole terms from higher multipole expansion, e.g. C₈ dipole-quadrupole, C₁₀ quadrupole-quadrupole, etc

$$E^{AB}_{ ext{disp}} = -rac{C^{AB}_6}{R^6_{AB}} - rac{C^{AB}_8}{R^8_{AB}} - rac{C^{AB}_{10}}{R^{10}_{AB}} + \mathcal{O}(R^{-12})$$

beyond pair-wise terms from multi-fragment terms, e.g C₉ dipole-dipole-dipole

$$C_9^{ABC} = -rac{3}{\pi}\int \mathrm{d}\omega\, lpha_{A}(i\omega)lpha_{B}(i\omega)lpha_{C}(i\omega)$$

Nonloal density based vdW

Semi-classical coarse-grained vdW

Method overview

Dr. Brandenburg - London Centre for Nanotechnology - University College London

6th of March 2018 9/23

Combining vdW correction with mean field model

sum of fragment contributions for total London dispersion energy

$$E_{\text{disp}} = -\frac{1}{2} \sum_{A,B}^{\text{pairs}} \sum_{n} \frac{C_{n}^{AB}}{R_{AB}^{n}} - \frac{1}{6} \sum_{A,B,C}^{\text{triples}} \sum_{n} \frac{C_{n}^{ABC}}{R_{ABC}^{n}} F^{\text{geom}} + \mathcal{O}(\text{quadruples})$$

- singularity at short-range (and expansion not valid)
- introduce short-range damping, motivated by range separation of Coulomb operator

$$E_{\text{tot}}^{AB} = E_{\text{DFT}}^{AB} \text{erf}(\omega R_{AB}) + E_{\text{disp}}^{AB} \text{erfc}(\omega R_{AB})$$

Nonloal density based vdW

Semi-classical coarse-grained vdW

Method overview

Dr. Brandenburg - London Centre for Nanotechnology - University College London

6th of March 2018 10/23

[±]UCL

1 Nonloal density based vdW

2 Semi-classical coarse-grained vdW

3 Method overview

Nonloal density based vdW

Semi-classical coarse-grained vdW

Method overview

Dr. Brandenburg - London Centre for Nanotechnology - University College London

6th of March 2018 11/23

How to classify different vdW methods?

Classifications according to

- order in many-body perturbation theory
- order in multipole expansion
- estimation and partitioning of C₆ coefficients
- shape of damping function (empiricism)
- use of precalculated, values (empiricism)

Method overview

D2: First generally dispersion correction with general applicability

$$egin{aligned} E^{(D2)}_{disp} &= -\sum_{AB}rac{C^{AB}_6}{R^6} f^{Fermi}_{dmp}(R) \ C^{AB}_6 &= \sqrt{C^{AA}_6 C^{BB}_6} \ C^{AA}_6 &= rac{N}{20} I_A lpha_A(0) \end{aligned}$$

- only atom-pairwise (two-body)
- Iowest order multipoles
- C₆ estimated from ionization potential and static polarizability
- Fermi type zero damping

Nonloal density based vdW

Semi-classical coarse-grained vdW

D3: Environment dependent *C*₆ computed from first principles

[•]UCL

$$\mathsf{E}_{\mathsf{disp}}^{(\mathsf{D3})} = -\frac{1}{2} \sum_{n=6,8} \sum_{A,B}^{\mathsf{pair}} \frac{C_n^{AB}}{R_{AB}^n} \cdot f_n^d(R_{AB}) - \frac{1}{6} \sum_{A,B,C}^{\mathsf{triples}} \frac{C_9^{ABC}}{R_{ABC}^9} \cdot f_9^d(R_{ABC}, \theta_{ABC})$$

neglect all terms decaying faster than $\frac{1}{B^9}$

- third order in many-body expansion
- quadrupole terms in multipole expansion
- C₆ calculated (for model systems) via TD-DFT partitioned to atoms via fractional coordination number
- rational Becke-Johnson damping

Nonloal density based vdW

Semi-classical coarse-grained vdW

Method overview

Dr. Brandenburg - London Centre for Nanotechnology - University College London

6th of March 2018 14/23

D3: Dynamic polarizability via linear response DFT

use frequency domain formalism to get excitation frequencies^[7]

$$\left(\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{A}^* & \mathbf{B}^* \end{array}\right) \left(\begin{array}{c} \mathbf{X} \\ \mathbf{Y} \end{array}\right) = \omega \left(\begin{array}{c} \mathbf{X} \\ \mathbf{Y} \end{array}\right)$$

orbital rotation matrices

$$\begin{aligned} \mathcal{A}_{ia,jb} &= \delta_{ij} \delta_{ab} (\epsilon_a - \epsilon_i) + \langle ab | 1/r | ij \rangle + \langle ab | f_{xc} | ij \rangle \\ \mathcal{B}_{ia,jb} &= \langle aj | 1/r | ib \rangle + \langle aj | f_{xc} | ib \rangle \end{aligned}$$

 approximation: neglect frequency dependence of f_{xc} and use ground state functional (PBE38)

similar to random phase approximation with exchange

^[4] M. E. Casida, Recent Advances in Density Functional Methods, D. P. Chong (World Scientific, Singapore), 155 (1995)

Nonloal density based vdW

Semi-classical coarse-grained vdW

D3: Geometric coordination number for interpolations of reference *C*₆

atoms-in-molecules C_6 by TD-DFT of $\alpha(i\omega)$ on model hydrides

reference C₆ are mapped to real system via geometrical coordination

Nonloal density based vdW

Semi-classical coarse-grained vdW

ALCL

C₆^{AA} [a.u.]

TS: Hirshfeld partitioning for C₆ **scaling**

$$\begin{split} E_{disp}^{(TS)} &= -\sum_{AB} \frac{C_6^{AB}}{R^6} f_{dmp}^{Fermi}(R) \\ C_6^{AB} &= \frac{2C_6^{AA}C_6^{BB}}{(\alpha^B(0)/\alpha^A(0))C_6^{AA} + (\alpha^A(0)/\alpha^B(0))C_6^{BB}} \\ C_6^{AA} &= \frac{V_{eff}^A}{V_{free}^A}C_{6,free}^{AA} \end{split}$$

- only atom-pairwise (two-body)
- Iowest order multipoles
- C₆ estimated from effective atomic volumes
- Fermi type zero damping

Nonloal density based vdW

Semi-classical coarse-grained vdW

AUCL

TS+MBD: summing all orders in a Drude model of oscillating dipoles

$$E_{disp}^{(TS+MBD)} = \frac{1}{2} \sum_{p=1}^{3N} \sqrt{\lambda_p} - \frac{3}{2} \sum_{A}^{N} \omega_A^{TS+SCS}$$
(1)
$$V_{CFDM} = \sum_{A \neq B}^{N} \sum_{p \in A}^{3} \sum_{q \in B}^{3} \chi_p \tau_{pq}^{LR} \chi_q$$
(2)
$$\tau_{pq}^{LR} = \nabla_p \otimes \nabla_q W'(R)$$
(3)

- all many body orders (coupled fluctuating dipole Hamiltonian)
- Iowest order multipoles
- C₆ estimated from screened effective atomic volumes
- Fermi type zero damping

Nonloal density based vdW

Semi-classical coarse-grained vdW

Method overview 6th of March 2018 18/23

AICI

XDM: Estimate *C*₆ from locally integrated exchange hole

[±]UCL

$$\begin{split} E_{\rm disp}^{\rm (XDM)} &= -\frac{1}{2} \sum_{n=6,8,10} \sum_{A,B}^{\rm atoms} \frac{C_n^{AB}}{r_{AB}^n} \cdot f_n^d(r_{AB}) \\ h_{X,\sigma}(r_1,r_2) &= -\frac{1}{\rho_{\sigma}(r_1)} \sum_{ij} \phi_{i\sigma}(r_1) \phi_{j\sigma}(r_1) \phi_{i\sigma}(r_2) \phi_{j\sigma}(r_2) \\ C_6^{AB} &= \frac{\langle \mu_X^2 \rangle_A \langle \mu_X^2 \rangle_B \alpha_A^0 \alpha_B^0}{\langle \mu_X^2 \rangle_A \alpha_B^0 + \langle \mu_X^2 \rangle_B \alpha_A^0} \end{split}$$

- lowest order in many-body expansion (higher orders exist, but are seldom used)
- quadrupole terms in multipole expansion
- C₆ calculated from exchange dipole
- rational Becke-Johnson damping

Nonloal density based vdW

Semi-classical coarse-grained vdW

Method overview 8 19/23

6th of March 2018

Semi-classical schemes yield highly accurate dispersion coefficients

[±]UCL

D3 correction

- dipole oscillator strength distribution (DOSD) yield C₆^{exptl.} (compiled by A. Tkatchenko)
- residual long-range mean absolute relative deviation (MARD) of D3 < 5% ^[9]
- deviations are close to intrinsic TD-DFT errors of α(*i*ω)

^[9]S. Grimme, WIREs Comput. Mol. Sci. 1, 211-228 (2011)

Nonloal density based vdW

Semi-classical coarse-grained vdW

Method overview

Dr. Brandenburg - London Centre for Nanotechnology - University College London

6th of March 2018 20/23

Summary C₆ based dispersion

[±]UCL

model	complexity ^a	ho based	limit ^b	multipoles ^c	many-body ^d		
non-local density based							
vdw-DF	high	\checkmark	\checkmark	Х	Х		
VV10	medium	\checkmark	\checkmark	Х	Х		
C ₆ based							
D2	low	Х	\checkmark	Х	Х		
D3	low	Xe	\checkmark	\checkmark	\checkmark		
TS	low	\checkmark	\checkmark	Х	Х		
MBD	medium	\checkmark	\checkmark	Х	\sqrt{f}		
XDM	medium	\checkmark	\checkmark	\checkmark	\sqrt{g}		
one electron potentials							
DCP	medium	\checkmark	Х	?	Х		
M06L	medium	\checkmark	Х	?	Х		

Nonloal density based vdW

Semi-classical coarse-grained vdW

D3 'advertisement': High accuracy at force field speed

[•]UCL

Advantages of D3 model

- intermolecular C₆ coefficients are very accurate
- no electronic structure input needed
- computation is extremely fast D3(two-body) \sim FF speed
- analytical first (and second) derivatives

Possible shortcomings

- no automatic adjustment to unusual electronic structures^[*]
- missing anisotropy of dispersion interaction
- no many-body contributions beyond Axilrod-Teller-Muto term
- high empiricism in short-range damping

Nonloal density based vdW

Semi-classical coarse-grained vdW

Dr. Brandenburg - London Centre for Nanotechnology - University College London

6th of March 2018 22/2