

Molecular crystal polymorph prediction via multilevel strategies

Gerit Brandenburg <g.brandenburg@ucl.ac.uk> | 30th of May 2017

PHYSICAL CHEMISTRY INSTITUTE - UNIVERSITY OF GÖTTINGEN, GER

[±]UCL

Introduction

- 2 Van der Waals inclusive density functional approximations
- Beyond pure density functionals: HSE-3c method
- 4 Simulation based crystal structure prediction
- 5 Conclusions

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 2/26

Understanding phenomena in nature

UCL

How can a Gecko stick to a glass wall?

- cannot be explained by classical mechanics
- London dispersion (C₆)

Why does a tablet change its properties?

- van der Waals interaction stabilizes tablet dependent on its form
- relevant for production process and dosage

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 3/26

Many properties depend on the polymorphic form of a crystal

[±]UCL

Polymorphism

- ability of a molecule to crystallize in more than one structure
- properties change with crystal packing, e.g. solubility, color, etc.^[1]

- cocoa butter (form VI) has a dull surface, soft texture, higher melting point
- metastable form V has glossy surface, crisp hardness, melts at 300 K^[2]

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 4/26

^[1] A. J. Cruz-Cabeza, S. M. Reutzel-Edens, J. Bernstein, *Chem. Soc. Rev.* 44, 8619-8635 (2015).

^[2] S. T. Beckett, *Science of Chocolate*; RSC Paperbacks (2000).

^[3] S. L. Price, JGB, Molecular Crystal Structure Prediction; Non-covalent interactions in Quantum Chemistry and Physics,

G. DiLabio, A. Otero-de-la-Roza, Eds., Elsevier Australia, Melbourne, in press (2017).

Late appearing polymorph disrupted supply of antiviral drug ritonavir

[±]UCL

change in molecular conformation leads to more intermolecular H-bonds

- ritonavir was industrially produced in form I for 2 years
- more stable form II suddenly crystallized
- much lower solubility made reformulation necessary^[4]

ightarrow Tools to predict possible polymorphs would be valuable

^[4]J. Bauer, et al., J. Pharm. Res. 18, 859-866 (2001)

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 5/26

Outline of talk

[±]UCL

1 Introduction

- 2 Van der Waals inclusive density functional approximations
- Beyond pure density functionals: HSE-3c method
- 4 Simulation based crystal structure prediction
- 5 Conclusions

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 6/26

Many good dispersion corrections exist

focus on D3 scheme as it can be used at all computational levels

own work started with extension of D3 type corrections

 [5] A. Stone The Theory of Intermolecular Forces, 2nd ed.; Oxford University Press, Oxford (2013)

 [6] S. Grimme, A. Hansen, JGB, C. Bannwarth, Chem. Rev. 116, 5105 (2016)

 Introduction
 vdW inclusive DFA

 Beyond pure DFA:HSE-3c
 Simulation based CSP

 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017

Exact expression for correlation energy cannot be solved for many systems

$$E_{\rm c} = -\frac{1}{2\pi} \int_0^1 \mathrm{d}\lambda \int \mathrm{d}\mathbf{r} \mathrm{d}\mathbf{r}' \frac{1}{|\mathbf{r} - \mathbf{r}'|} \times \int_0^\infty \mathrm{d}\omega \left[\chi_\lambda(\mathbf{r}, \mathbf{r}', i\omega) - \chi_0(\mathbf{r}, \mathbf{r}', i\omega) \right]$$

- from adiabatic connection fluctuation dissipation theorem^[7]
- Coulomb interaction scaled by λ
- dynamical charge density susceptibility

$$\chi_{0}(\mathbf{r},\mathbf{r}',i\omega) = -4\sum_{i}\sum_{a}\frac{\omega_{ai}}{\omega_{ai}^{2}+\omega^{2}}\varphi_{i}(\mathbf{r})\varphi_{a}(\mathbf{r})\varphi_{a}(\mathbf{r}')\varphi_{i}(\mathbf{r}'),$$

 \rightarrow approximation needed

^[7] A. Zangwill, P. Soven, Phys. Rev. A 21, 1561 (1980)

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 7/26

Coarse-graining to atomic contributions leads to significant simplifications

coarse-grain to atomic contributions

$$lpha_{ij}(i\omega) = \int \mathrm{d}\mathbf{r} \mathrm{d}\mathbf{r}' \, \mathbf{r}_i \mathbf{r}_j' \chi(\mathbf{r},\mathbf{r}',i\omega)$$

AUCL

expansion of Coulomb operator in multipoles^[8]

$$E^{AB}_{ ext{disp}} = - \underbrace{rac{3}{\pi}\int\mathrm{d}\omega\,lpha_A(i\omega)lpha_B(i\omega)}_{C^{AB}_c} imesrac{1}{R^6_{AB}}$$

C₈^{AB} and C₉^{AB} from recursion relations and averages^[9]

$$m{\mathcal{E}}_{ ext{disp}}^{ ext{(D3)}} = -rac{1}{2} \; \sum_{n=6,8} \sum_{A,B}^{ ext{atoms}} rac{C_n^{AB}}{R_{AB}^n} \cdot f_n^d(m{R}_{AB}) - rac{1}{6} \; \sum_{A,B,C}^{ ext{atoms}} rac{C_9^{ABC}}{R_{ABC}^9} \cdot f_9^d(m{R}_{ABC}, heta_{ABC})$$

^[8] H. B. G. Casimir. D. Polder, *Phys. Rev.* **73**, 360 (1948)

^[9] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 8/26

Geometric coordination number for interpolations of reference *C*₆

- atoms-in-molecules C_6 by TD-DFT of $\alpha(i\omega)$ on model hydrides
- reference *C*₆ are mapped to real system via geometrical coordination
- short-range damping avoids double counting^[11]

 [11] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem., 32, 1456 (2011)

 Introduction
 vdW inclusive DFA

 Beyond pure DFA:HSE-3c
 Simulation based CSP

 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 9/26

Semi-classical scheme yields highly accurate dispersion coefficients

[±]UCL

D3 correction

- dipole oscillator strength distribution (DOSD) yield C₆^{exptl.} (compiled by A. Tkatchenko)
- residual long-range mean absolute relative deviation (MARD) of D3 < 5% ^[12]
- deviations are close to intrinsic TD-DFT errors of α(*i*ω)

^[12]S. Grimme, WIREs Comput. Mol. Sci. 1, 211-228 (2011)

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 10/26

D3 in a nutshell: High accuracy at force field speed

UCL

Advantages of D3 model

- intermolecular C₆ coefficients are very accurate
- no electronic structure input needed
- computation is extremely fast D3(two-body) \sim FF speed
- analytical first (and second) derivatives

Possible shortcomings

- no automatic adjustment to unusual electronic structures^[13]
- missing anisotropy of dispersion interaction
- no many-body contributions beyond Axilrod-Teller-Muto term
- high empiricism in short-range damping

^[6] S. Grimme, A. Hansen, <u>JGB</u>, C. Bannwarth, *Chem. Rev.* **116**, 5105 (2016)

^[13] work on extension by E. Caldeweyher, S. Grimme, C. Bannwarth, J. Chem. Phys. submitted (2017)

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 11/26

[±]UCL

1 Introduction

- 2 Van der Waals inclusive density functional approximations
- 3 Beyond pure density functionals: HSE-3c method
- 4 Simulation based crystal structure prediction

5 Conclusions

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 12/26

Lessons learned in the past years

 realistic structures are the key to many important physical and chemical properties

LOCL

 Kohn-Sham density functional theory is method of choice for structures; wavefunction methods may take over for energies

 configurational sampling, entropy, and solvation issues are as important as good convergence in electronic energy

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 12/26

Multilevel methodologies: finding the right compromise

[±]UCL

	task/property	example method
accurate QM	single-point energy	DLPNO-CCSD(T) DMC, RPA+SE
cheap QM	optimization	metaGGA (SCAN-D3 ^[14]) HSE-3c ^[15,16]
very cheap QM	optimization/Hessians conformations	semi-empirical HF-3c ^[17,18] , DFTB3-D3 ^[19]
force field	dynamics conformational sampling	transferable or molecule specific (QM derived) FF

^[14] JGB, J. E. Bates, J. Sun, J. P. Perdew Phys. Rev. B, 94, 115144 (2016)

^[15] JGB, E. Caldeweyher, S. Grimme, *Phys. Chem. Chem. Phys.*, **18**, 15519 (2016)

^[16] S. Grimme, <u>JGB</u>, C. Bannwarth, A. Hansen, *J. Chem. Phys.*, **143**, 054107 (2015)

^[17] R. Sure, S. Grimme, J. Comput. Chem., 34, 1672 (2013) ^[18] JGB, S. Grimme, Top. Curr. Chem, 345, 1 (2014)

^[19] JGB, S. Grimme, J. Phys. Chem. Lett. 5, 1785 (2014)

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 13/26

HSE-3c: Small basis DFT with semi-classical corrections

[±]UCL

Requirements

- $\sim 10 \times \text{faster vs. standard DFA}$
- reduce self-interaction error
- numerically robust

- ightarrow small atomic orbital expansion
- $\rightarrow\,$ use Fock exchange
- \rightarrow long-range screening of exchange

$$E_{\text{tot}}^{\text{HSE-3c}} = E^{(\text{modHSE})} + E_{\text{DISP}}^{(\text{D3})} + E_{\text{BSSE}}^{\text{gCP}}$$

Technical details:^[15]

- modified HSE^[20] in small def2-mSVP^[16] basis set
- D3 and gCP semi-classical corrections (7 global parameters)

^[15] <u>JGB</u>, E. Caldeweyher, S. Grimme, *Phys. Chem. Chem. Phys.*, **18**, 15519 (2016)

^[16] S. Grimme, <u>JGB</u>, C. Bannwarth, A. Hansen, J. Chem. Phys., 143, 054107 (2015)

^[20] J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006)

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 14/26

Compromise of known functionals for exchange correlation functional

$$E_{\rm xc}^{\rm (modHSE)} = \mathbf{a_x} \, E_{\rm x}^{\rm (HF,SR)}(\omega) + (1-a_{\rm x}) \, E_{\rm x}^{\rm (HSE,SR)}(\omega) + E_{\rm x}^{\rm (HSE,LR)}(\omega) + E_{\rm c}^{\rm (modPBE)}$$

modified HSE to reproduce modified PBE-XC

$$F_X^{\mathsf{PBE}} = 1 + rac{\mu s}{1 + rac{\mu s^2}{\kappa}}, \qquad s = |
abla
ho /
ho^{4/3}|$$

- μ from PBEsol, κ averaged from PBE/revPBE
- $\beta = 0.03$ in F_C^{PBE} fitted to atomization energies
- $a_x = 0.42$: getting bond length right (standard range-separation $\omega = 0.11$)
- mSVP atomic orbitals fixed and available for whole PES

\rightarrow only **seven** globally fitted parameters

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 15/26

Systematically improvable bond length and molecular structures

error estimates from measurement and theoretical back-correction

significant effect of dispersion interaction

Good mass densities on diverse set of molecular crystals

30th of May 2017

17/26

- impact of zero-point and thermal contribution important
- outliers due to problematic induction effects

 [19] E. Johnson, A. Otero-de-la-Roza, J. Chem. Phys. 137, 054103 (2012)

 [20] A. Reilly, A. Tkatchenko, J. Chem. Phys. 139, 024705 (2013)

 [21] JGB, T. Maas, S. Grimme, J. Chem. Phys. 142, 124104 (2015)

 Introduction
 vdW inclusive DFA

 Bevond pure DFA:HSE-3c
 Simulation based CSP

Dr. Brandenburg - London Centre for Nanotechnology - University College London

Consistency for structures achieved

[±]UCL

	ROT34 org. mol.	S66x8 non-covalent	X23 molecular crystal		
TPSS/large basis	1.9	14.6	27.9		
TPSS-D3/large basis	1.3	1.3	1.0		
HF-3c (very cheap QM)	1.5	-1.2	-5.7		
DFTB3-D3 (very cheap QM)	1.2	-2.9	-12.6		
HSE-3c (cheap QM)	0.2	1.3	0.7		
mean of relative deviation in %					

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 18/26

Fast electronic structure with ab-initio accuracy

fast computer code CRYSTAL17^[21] with cost-efficient methods

enabling routine electronic structure calculation of large systems

^[21] R. Dovesi, et al., Int. J. Quantum Chem., 114, 1287-1317 (2014), new release in 2017

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 19/26

[±]UCL

1 Introduction

- 2 Van der Waals inclusive density functional approximations
- 3 Beyond pure density functionals: HSE-3c method
- 4 Simulation based crystal structure prediction

5 Conclusions

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 20/26

Predict most stable crystal polymorphs based on the molecular diagram

UCL

The inability to predict something as simple as how a molecule would crystallize is one of the continuing scandals in the physical sciences.^[22,23]

Task

- molecule is chosen due to its chemical/physical/biological properties.
- based on the molecular diagram only, the most stable crystal structures should be predicted.
- predict properties of interest for the most promising candidates.

^[22] A. Gavezzotti, Acc. Chem. Res. 27, 309-314 (1994).

^[23] J. Maddox, Nature 335, 201-201 (1988).

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 20/26

Sampling and energetic ranking for crystal structure prediction

^[22] S. Price, Chem. Soc. Rev. 43, 2098 (2014)

[23] M. Vasileiadis, A. V. Kazantsev, P. G. Karamertzanis, C. S. Adjiman, C. C. Pantelides, Acta Cryst. B 68, 677 (2012)

 Introduction
 vdW inclusive DFA
 Beyond pure DFA::HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 21/26

Promising results in the 6th blind test

[±]UCL

good lattice energy based ranking of PBE-D3^[24,25]

• some structures lost in FF \longrightarrow DFT transition

^[24] A. Reilly, et al. Acta Cryst. B, 72, 439 (2016)

^[25] JGB, S. Grimme Acta Cryst. B, 72, 502 (2016)

 Introduction
 vdW inclusive DFA
 Beyond pure DFA::HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 22/26

Further improvement needed for reliable crystal structure prediction

UCL

1. Influence of thermodynamic

- P-T-dependent phase diagramm
- polymorph can change with thermodynamic conditions^[26]

2. Accurate lattice energy

- improve DFT methods^[27]
- many-body methods, like RPA and DMC are promising.^[28]

3. Treatment of flexibility

- QM derived intramolecular FF
- machine learning potentials with DFT training set

 $^{[26]}$ QHA based work in progress $^{[27]}$ triple- ζ based composite method B97-3c under development

^[28] A. Zen, <u>JGB</u>, J. Klimes, D. Alfè, A. Michaelides, *Phys. Rev. Lett.*, submitted (2017)

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 23/26

Summary

UCL

Conclusions

- D3 dispersion correction can be combined with various methods
- cheap QM methods (HSE-3c, DFTB3-D3) useful for fast electronic structures
- promising results of crystal energy rankings in CSP blind test

Outlook and possible improvements

- exploring the merit of DFT-D methods in context of CSP further

 → generated DFT-D references for ML?
- analysis of phonon spectra, free energies

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 24/26

Acknowledgements

AUCI

Collaborators

- Stefan Grimme (Bonn)
- Sally Price (London)
- Angelos Michaelides (London)
- Felix Fernandez-Alonso (Harwell Oxford)

- Eike Caldeweyher (Bonn)
- Bartolomeo Civalleri (Torino)
- Roberto Orlando[†] (Torino)
- Anthony Reilly (Cambridge)

Funding

Introduction vdW inclusive DFA Bevond pure DFA:HSE-3c Simulation based CSP Conclusions 30th of May 2017 25/26 Dr. Brandenburg – London Centre for Nanotechnology – University College London

Acknowledgements

[±]UCL

Collaborators

- Stefan Grimme (Bonn)
- Sally Price (London)
- Angelos Michaelides (London)
- Felix Fernandez-Alonso (Harwell Oxford)

- Eike Caldeweyher (Bonn)
- Bartolomeo Civalleri (Torino)
- Roberto Orlando[†] (Torino)
- Anthony Reilly (Cambridge)

Funding

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 25/26

Key references

[±]UCL

Dispersion corrections:

S. Grimme, A. Hansen, JGB, C. Bannwarth, Chem. Rev. 116, 5105 (2016)

DFT development

<u>JGB</u>, E. Caldeweyher, S. Grimme, *Phys. Chem. Chem. Phys.*, **18**, 15519 (2016) S. Grimme, <u>JGB</u>, C. Bannwarth, A. Hansen, *J. Chem. Phys.*, **143**, 054107 (2015)

DFA-DISP for crystal structure prediction:

<u>JGB</u>, S. Grimme, *Top. Curr. Chem*, **345**, 1 (2014) S. L. Price, <u>JGB</u>, *Molecular Crystal Structure Prediction*, Elsevier, Melbourne, Australia, in press (2017).

website: gerit-brandenburg.de

 Introduction
 vdW inclusive DFA
 Beyond pure DFA:HSE-3c
 Simulation based CSP
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 30th of May 2017
 26/26