

Benchmarking the interaction strength between water and graphene

Andrea Zen¹ & Jan Gerit Brandenburg^{1,2}

Collaborators: Dario Alfè,¹ Angelos Michaelides,¹ Benjamin Ramberger,³ Georg Kresse,³ Theodoros Tsatsoulis,⁴ Andreas Grüneis ⁴

¹ University College London; ² University of Goettingen; ³ University of Vienna; ⁴ Vienna University of Technology

`Properties of Water at Molecular Scale' Workshop, NGI, Manchester, UK July 3rd, 2018

Water-graphene is important **UCL**

Important applications in:

Desalination, Nano-filtration and Energy harvesting.

^oExperimental study of water flow through carbon nanotubes [Nature **537**, 210 (2016).]

Massive radius-dependent flow slippage in carbon nanotubes

OApplications for water filters [Nature Nanotech. 12, 546–550 (2017)]

Tunable sieving of ions using graphene oxide membranes

Outline

□Molecular level understanding

- Binding energy of a single water molecule adsorbed on graphene
- Missing a reliable benchmark value (discrepancies among different methods)

Diffusion quantum Monte Carlo

- Recent algorithmic developments, improved accuracy and efficiency
- Revised DMC value for the water-graphene binding energy

Results and discussion

- Adsorption energies from many-body methods
- Analyzing contributions to adsorption motifs
- Convergence with substrate size
- Benchmarking density functional approximations

Adsorption of a single water **AUCL**

• The most important quantity to consider is the **Binding Energy** (E_b) .

 \circ E_b crucially related to the **contact angle** of a water droplet on graphene.

DFT is useless

 Density functional theory (DFT) can provide any value between 0 and -160 meV depending on the exchange-correlation functional and vdWcorrections [Phys. Rev. B, 84, 033402 (2011)].

Value of E_b is still unknown

Ref.	E _b	Method
1	-130 meV	DFT/CC
2	-130 meV	DFT-SAPT
3	-70 ± 10 meV	Diffusion Monte Carlo (DMC)
4	-135 meV	i-CCSD(T)

- 1. Miroslav Rubes *et al., JPC C* **2009**, 113, 8412
- 2. G.R. Jenness, O. Karalti and K.D. Jordan, PCCP 2010, 12, 6375
- 3. J. Ma, A. Michaelides, D. Alfè, L. Schimka, G. Kresse, and E. Wang, *Phys. Rev. B* **2011**, 84, 033402
- 4. E. Voloshina, D. Usvyat, M. Schutz, Y. Dedkov and B. Paulus PCCP 2011, 13, 12041

Value of E_b is still unknown

Ref.	E _b	Method	
1	-130 meV	DFT/CC	Corrects DFT based on differences at small cluster level
2	-130 meV	DFT-SAPT	Extrapolations on clusters
3	-70 ± 10 meV	Diffusion Monte Carlo (DMC)	Periodic system, ~ 50 Million Hours, large stochastic error, finite-size effects
4	-135 meV	i-CCSD(T)	Incremental expansion, correlation from cluster , small basis set

• All these approaches had weakness and possible issues.

- 1. Miroslav Rubes *et al., JPC C* **2009**, 113, 8412
- 2. G.R. Jenness, O. Karalti and K.D. Jordan, PCCP 2010, 12, 6375
- 3. J. Ma, A. Michaelides, D. Alfè, L. Schimka, G. Kresse, and E. Wang, *Phys. Rev. B* **2011**, 84, 033402
- 4. E. Voloshina, D. Usvyat, M. Schutz, Y. Dedkov and B. Paulus PCCP 2011, 13, 12041

Value of E_b is still unknown

Ref.	E _b	Method	
1	-130 meV	DFT/CC	Corrects DFT based on differences at small cluster level
2	-130 meV	DFT-SAPT	Extrapolations on clusters
3	-70 ± 10 meV	Diffusion Monte Carlo (DMC)	Periodic system, ~ 50 Million Hours, large stochastic error, finite-size effects
4	-135 meV	i-CCSD(T)	Incremental expansion, correlation from cluster , small basis set

- All these approaches had weakness and possible issues.
- The method of choice is DMC (accuracy and efficiency drastically improved in the last 7 years).
- 1. Miroslav Rubes *et al., JPC C* **2009**, 113, 8412
- 2. G.R. Jenness, O. Karalti and K.D. Jordan, PCCP 2010, 12, 6375
- 3. J. Ma, A. Michaelides, D. Alfè, L. Schimka, G. Kresse, and E. Wang, *Phys. Rev. B* **2011**, 84, 033402
- 4. E. Voloshina, D. Usvyat, M. Schutz, Y. Dedkov and B. Paulus PCCP 2011, 13, 12041

Outline

□Molecular level understanding

- Binding energy of a single water molecule adsorbed on graphene
- Missing a reliable benchmark value (discrepancies among different methods)

Diffusion quantum Monte Carlo

- Recent algorithmic developments, improved accuracy and efficiency
- Revised DMC value for the water-graphene binding energy

Results and discussion

- Adsorption energies from many-body methods
- Analyzing contributions to adsorption motifs
- Convergence with substrate size
- Benchmarking density functional approximations

Diffusion Monte Carlo

A **propagation** according to the imaginary time Schrodinger equation is performed to **project out the exact ground state** from a trial wave function.

Diffusion Monte Carlo

A **propagation** according to the imaginary time Schrodinger equation is performed to **project out the exact ground state** from a trial wave function.

OGenerate a set of configurations (walkers) according to a trial wave function
OPropagate in time, with finite time-step (branching-drift-diffusion process)
OEquilibration (project out the exact G.S.)
OStatistical sampling (stochastic method, autocorrelation time)

Chem. Rev., 116, 5188, (2016)

Diffusion Monte Carlo

A **propagation** according to the imaginary time Schrodinger equation is performed to **project out the exact ground state** from a trial wave function.

OGenerate a set of configurations (walkers) according to a trial wave function
OPropagate in time, with finite time-step (branching-drift-diffusion process)
OEquilibration (project out the exact G.S.)
OStatistical sampling (stochastic method, autocorrelation time)

Value of time-step is crucial: DMC exact for infinitesimal time-step; DMC cost is proportional to time-step inverse.

Other approximations employed are not an issue in non-covalent interactions.

Recent developments in DMC AUCL

Discovered and solved a sizeconsistency issue for finite time-step [Phys. Rev. B, **93**, 241118(R) (2016)]

Old DMC algorithm => UNR
ONew DMC algorithm => ZSGMA

Recent developments in DMC AUC

Discovered and solved a sizeconsistency issue for finite time-step [Phys. Rev. B, **93**, 241118(R) (2016)]

Old DMC algorithm => UNR
ONew DMC algorithm => ZSGMA

High precision and accuracy at (relatively) low computational cost

DMC in periodic systems

Simulation cell water in 5x5 graphene

DMC in periodic systems

There are finite-size effects (FSE)!

Exact binding energy is the converged result for $n \ge n$ supercell

DMC in periodic systems

Simulation cell water in 5x5 graphene

2 x 2 supercell

There are finite-size effects (FSE)!

Exact binding energy is the converged result for $n \ge n$ supercell

Proc. Natl. Acad. Sci. U.S.A., 115, 1724 (2018)

Tested all available schemes for **FSE correction** in **molecular crystals**, where can compare with experimental results

Proc. Natl. Acad. Sci. U.S.A., 115, 1724 (2018)

Proc. Natl. Acad. Sci. U.S.A., 115, 1724 (2018)

Much more efficient

Proc. Natl. Acad. Sci. U.S.A., 115, 1724 (2018)

Revised E_b from DMC

unpublished material

$$E_{b} = -99 \pm 5 \text{ meV}$$

Higher precision; FSE correction

Outline

Molecular level understanding

- lacksim Binding energy of a single water molecule adsorbed on graphene
- Missing a reliable benchmark value (discrepancies among different methods)

Diffusion quantum Monte Carlo

- \bullet Recent algorithmic developments, improved accuracy and efficiency
- Revised DMC value for the water-graphene binding energy

\square Results and discussion

- \blacklozenge Adsorption energies from many-body methods
- iglet Analyzing contributions to adsorption motifs
- \blacklozenge Convergence with substrate size
- iglet Benchmarking density functional approximations

Adsorption on small substrates UCL

Adsorption on periodic graphenec

- Very similar binding energies for different motifs
- In contrast to smaller substrates

Slow convergence of QC

unpublished material

Domain based Local Pair Natural Orbital Coupled Cluster with Singles, Doubles and perturbative Triples DLPNO-CCSD(T)

- Needs to describe exited determinants
- Cubic convergence ~X⁻³

Local coupled cluster:

- J. Chem. Phys. 2001, 114, 661
- J. Chem. Phys. 2013, 139, 134101
- J. Chem. Phys. 2018, 148, 011101

Slow convergence of QC

unpublished material

Domain based Local Pair Natural Orbital Coupled Cluster with Singles, Doubles and perturbative Triples DLPNO-CCSD(T)

- Needs to describe exited determinants
- Cubic convergence ~X⁻³

Local coupled cluster:

- J. Chem. Phys. 2001, 114, 661
- J. Chem. Phys. 2013, 139, 134101
- J. Chem. Phys. 2018, 148, 011101

Extrapolation of substrate size UCL

- Convergence with substrate size very slow
- Extrapolations using benzene and coronene data is unreliable

Charge redistribution

Density difference compared to separated fragments

- Distribution strongly dependent on motif
- 1&2-leg induce locally charge-rich areas
- 0-leg induces charge-loss

Discrepancies resolved

Ref.	E _b	Method	
1	-130 meV	DFT/CC	Unreliable extrapolation
2	-130 meV	DFT-SAPT	Unreliable extrapolation, SAPT is not a reference method
3	-70 ± 10 meV	Diffusion Monte Carlo (DMC)	Large stochastic error, finite-size effects are neglected
4	-135 meV	i-CCSD(T)	Single particle basis set too small
5	-99 ± 5 meV	Diffusion Monte Carlo (DMC)	

- 1. Miroslav Rubes *et al., JPC C* **2009**, 113, 8412
- 2. G.R. Jenness, O. Karalti and K.D. Jordan, PCCP 2010, 12, 6375
- 3. J. Ma, A. Michaelides, D. Alfè, L. Schimka, G. Kresse, and E. Wang, *Phys. Rev. B* **2011**, 84, 033402
- 4. E. Voloshina, D. Usvyat, M. Schutz, Y. Dedkov and B. Paulus PCCP 2011, 13, 12041
- 5. J. G. Brandenburg, A. Zen, A. Michaelides, B. Ramberger, G. Kresse, T. Tsatsoulis, A. Grüneis, D. Alfé

High level references with small error margins

High level references with small error margins

unpublished material

Van der Waals interactions mandatory

unpublished material

Large range of DFT results: Benchmark needed

unpublished material

Route to larger scales

Large scale applications are accessible via machine learning (ML) techniques

Route to larger scales

Large scale applications are accessible via machine learning (ML) techniques

Conclusions

- Modeling to be used complimentary to experimental studies
- DMC is affordable method with controllable high accuracy
- Molecular level understanding of water-graphene interaction

Outlook

- Algorithmic DMC improvements
- Study of water dynamics on graphene via DMC based ML

$$\langle \mathbf{R} | W | \mathbf{R}' \rangle = \sum_{r, i'} \frac{2l+1}{4\pi} \nu_l(r_{ij}) \frac{\delta(r_{ij} - r'_{ij})}{r_{ir}^2} P_l(\hat{r}_{ij} \cdot \hat{r}'_{ij})$$

$$W_{\text{eff}} = \Psi_{\text{T}}^{-1}(\mathbf{R}) \int \langle \mathbf{R} | W | \mathbf{R}' \rangle \Psi_{\text{T}}(\mathbf{R}') \, \mathrm{d}\mathbf{R}'$$

Thanks

UCL team

Andrea Zen Angelos Michaelides

Benjamin Ramberger Georg Kresse

Gerit Brandenburg

Dario Alfè

Theodoros Tsatsoulis

Andreas Grüneis

Alexander von Humboldt Stiftung/Foundation

Vienna collaborators