Development and application of "low-cost" dispersion corrected density functional methods

Gerit Brandenburg <g.brandenburg@ucl.ac.uk> | 2016-11-17

MAX PLANCK INSITUTE FOR SOLID STATE RESEARCH - STUTTGART

Outline of talk

[±]UCL

2016-11-17

2/24

- 1 Introduction and motivation
- 2 The D3 London dispersion model
- 3 HSE-3c based 'low-cost' DFT
- 4 Application studies
- 5 Conclusions

Introduction and motivation The D3 London dispersion model HSE-3c based 'low-cost' DFT Application studies Conclusions

Large (periodic) systems with small energy gap are of interest

[±]UCL

Physico-chemical properties depend on crystal packing?

- color indicates band gap
 2 eV 2.5 eV
- available methods are either inaccurate or unfeasible

How to compute the electronic structure of biological mol.?

- large structures, typically in solution, small gaps by GGAs
- need for an accuracy semiempirical methods cannot provide

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 3/24

Lessons learned in the past years

- good structures are the key to many important physical and chemical properties
- Kohn-Sham density functional theory is the method of choice for structures wavefunction methods may take over for energies

LOU

 sampling, entropy, solvation issues are as important as good convergence in electronic energy

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 4/24

Multilevel methodologies: finding the right compromise

[±]UCL

	task/property	example method
accurate QM	single-point energy	DLPNO-CCSD(T) DMC, FCIQMC
cheap QM	all	metaGGA (SCAN-D3 ^[1]) HSE-3c ^[2,3]
very cheap QM	optimization/Hessians conformations	semi-empirical HF-3c ^[4,5] , DFTB3-D3 ^[6]
force field	dynamics conformational sampling	transferable or molecule specific (QM derived) FF

^[1] JGB, J. E. Bates, J. Sun, J. P. Perdew *Phys. Rev. B*, **94**, 115144 (2016)

^[2] S. Grimme, JGB, C. Bannwarth, A. Hansen, J. Chem. Phys., 143, 054107 (2015)

^[3] JGB, E. Caldeweyher, S. Grimme, *Phys. Chem. Chem. Phys.*, **18**, 15519 (2016)

^[4] R. Sure, S. Grimme, J. Comput. Chem., 34, 1672 (2013) ^[5] JGB, S. Grimme, Top. Curr. Chem, 345, 1 (2014)

^[6] JGB, S. Grimme, *J. Phys. Chem. Lett.* 5, 1785 (2014)

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 5/24

Outline of talk

[±]UCL

Introduction and motivation

- 2 The D3 London dispersion model
- 3 HSE-3c based 'low-cost' DFT
- 4 Application studies

5 Conclusions

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 6/24

Many good dispersion corrections exist

≜IICI

focus on D3 scheme as it can be used at all computational levels

^[7] A. Stone *The Theory of Intermolecular Forces*; Oxford University Press: Oxford (1997)

^[8] S. Grimme, A. Hansen, JGB, C. Bannwarth, Chem. Rev. 116, 5105 (2016)

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 6/24

Exact expression for correlation energy cannot be solved for many systems

$$E_{\rm c} = -\frac{1}{2\pi} \int_0^1 \mathrm{d}\lambda \int \mathrm{d}\mathbf{r} \mathrm{d}\mathbf{r}' \frac{1}{|\mathbf{r} - \mathbf{r}'|} \times \int_0^\infty \mathrm{d}\omega \left[\chi_\lambda(\mathbf{r}, \mathbf{r}', i\omega) - \chi_0(\mathbf{r}, \mathbf{r}', i\omega) \right]$$

- from adiabatic connection fluctuation dissipation theorem^[9]
- by λ scaled Coulomb interaction
- dynamical charge density susceptibility

$$\chi_{0}(\mathbf{r},\mathbf{r}',i\omega) = -4\sum_{i}\sum_{a}\frac{\omega_{ai}}{\omega_{ai}^{2}+\omega^{2}}\varphi_{i}(\mathbf{r})\varphi_{a}(\mathbf{r})\varphi_{a}(\mathbf{r}')\varphi_{i}(\mathbf{r}'),$$

 \rightarrow approximation needed

^[9] A. Zangwill, P. Soven, Phys. Rev. A 21, 1561 (1980)

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 7/24

Coarse-graining to atomic contributions leads to significant simplifications

coarse-grain to atomic contributions

$$\alpha_{ij}(i\omega) = \int \mathrm{d}\mathbf{r} \mathrm{d}\mathbf{r}' \, \mathbf{r}_i \mathbf{r}_j' \chi(\mathbf{r}, \mathbf{r}', i\omega)$$

expansion of Coulomb operator in multipoles^[10]

$$E_{ ext{disp}}^{AB} = - \underbrace{rac{3}{\pi}\int \mathrm{d}\omega\,lpha_A(i\omega)lpha_B(i\omega)}_{C_h^{AB}} imes rac{1}{R_{AB}^6}$$

C₈^{AB} and C₉^{AB} from recursion relations and averages^[11]

$$E_{ ext{disp}}^{ ext{(D3)}} = -rac{1}{2} \sum_{n=6,8} \sum_{A,B}^{ ext{aloms}} rac{C_n^{AB}}{R_{AB}^n} \cdot f_n^d(R_{AB}) - rac{1}{6} \sum_{A,B,C}^{ ext{atoms}} rac{C_9^{ABC}}{R_{AB}^9} \cdot f_9^d(R_{ABC}, heta_{ABC})$$

^[10] H. B. G. Casimir. D. Polder, Phys. Rev. 73, 360 (1948)

^[11] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 8/24

Geometric coordination number for interpolations of reference *C*₆

- atoms-in-molecules C_6 by TD-DFT of $\alpha(i\omega)$ on model hydrides
- reference *C*₆ are mapped to real system via geometrical coordination
- short-range damping avoids double counting^[12]

^[12]S. Grimme, S. Ehrlich, L. Goerigk, *J. Comput. Chem.*, 32, 1456 (2011)

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 9/24

Semi-classical scheme yields highly accurate dispersion coefficients

[±]UCL

^[13]S. Grimme, WIREs Comput. Mol. Sci. 1, 211-228 (2011)

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 10/24

Outline of talk

[±]UCL

- 1 Introduction and motivation
- 2 The D3 London dispersion model
- 3 HSE-3c based 'low-cost' DFT
- 4 Application studies

5 Conclusions

Introduction and motivation The D3 London dispersion model HSE-3c based 'low-cost' DFT Application studies Conclusions Dr. Brandenburg – London Centre for Nanotechnology – University College London 2016-11-17 11/24

Requirements on the new density functional method

[±]UCL

- reasonably fast for optimizations and frequencies
 small atomic orbital expansion
- avoid most self-interaction error
 → use one-determinantal (Fock) exchange
- numerically robust including small gap solids
 → long-range screening of Fock exchange
- good, globally accurate PES
- accurate non-covalent interactions
- consistency for isolated molecules and the condensed phase

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 11/24

Three ingredients target different interaction regimes

[±]UCL

HSE-3c contributions^[3]

 $\textit{E}_{\text{tot}}^{\text{HSE-3c}} = \textit{E}_{\text{xc}}^{(\text{modHSE})} + \textit{E}_{\text{DISP}}^{(\text{D3})} + \textit{E}_{\text{BSSE}}^{\text{gCP}}$

(A) DFA/basis set mod. HSE^[14] / def2-mSVP^[2]

(B) London DISP interaction D3 correction

(C) BSSE counterpoise correction gCP scheme

^[2] S. Grimme, JGB, C. Bannwarth, A. Hansen, *J. Chem. Phys.* 143, 054107 (2015)

^[3] JGB, E. Caldeweyher, S. Grimme, Phys. Chem. Chem. Phys. 18, 15519 (2016)

^[14] J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006)

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 12/24

Compromise of known functionals for exchange correlation functional

$$E_{xc}^{(\mathsf{ModHSE})} = \mathbf{a}_{x} \, E_{x}^{(\mathsf{HF,SR})}(\omega) + (1 - a_{x}) \, E_{x}^{(\mathsf{HSE,SR})}(\omega) + E_{x}^{(\mathsf{HSE,LR})}(\omega) + E_{c}^{(\mathsf{modPBE})}$$

≜UCL

modified HSE to reproduce modified PBE-XC

E

$$F_X^{\mathsf{PBE}} = 1 + rac{\mu s}{1 + rac{\mu s^2}{\kappa}}, \qquad s = |
abla
ho /
ho^{4/3}|.$$

- μ from PBEsol, κ averaged from PBE/revPBE
- $\beta = 0.03$ in F_C^{PBE} fitted to atomization energies
- $a_x = 0.42$: getting bond length right (standard range-separation $\omega = 0.11$)
- mSVP atomic orbitals fixed and available for whole PES

\rightarrow only **seven** globally fitted parameters

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 13/24

Large computational savings and numerically robust for small-gap solids

Series of oligoacene crystals

- substantial speedup due to small basis set
- short-range Fock exchange reduces SIE
- numerically robust at small band gaps

≜UCL

\rightarrow exploit rotational-translational symmetry within CRYSTAL $^{[15,16]}$

^[15]R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, et al., Int. J. Quantum Chem., 114, 1287 (2014)

^[16]M. Cutini, B. Civalleri, M. Corno, R. Orlando, JGB, L. Maschio, P. Ugliengo, J. Chem. Theory Comput., **12**, 3340 (2016)

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 14/24

Systematically improvable bond length and molecular structures

UCL

significant effect of dispersion interaction

^[17] S. Grimme, M. Steinmetz, Phys. Chem. Chem. Phys., 15, 16031 (2013)

^[18] J. Rezáč, K. Riley, P. Hobza, *J. Chem. Theory Comput.*, **8**, 2427 (2011)

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 15/24

Description of simple organic crystals close to reference accuracy

≜IICL

thermal corrections needed for equilibrium structure and lattice energy^[19]

error compensation between missing dispersion and BSSE is not reliable

identified by Computational Chemistry Highlights:
 "Most striking is the roughly 'MP2-quality' (...) obtained for non-covalent complexes and equilibrium structures (...) for medium-sized organic molecules."

^[19]A. M. Reilly, A. Tkatchenko, J. Chem. Phys. **139**, 024705 (2013)

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 16/24

Consistency for structures achieved

UCL

	ROT34 org. mol.	S66x8 non-covalent	X23 molecular crystal		
TPSS/large basis	1.9	14.6	27.9		
TPSS-D3/large basis	1.3	1.3	1.0		
HF-3c (very cheap QM)	1.5	-1.2	-5.7		
DFTB3-D3 (very cheap QM)	1.2	-2.9	-12.6		
HSE-3c (cheap QM)	0.2	1.3	0.7		
mean of relative deviation in %					

Introduction and motivation The D3 London dispersion model HSE-3c based 'low-cost' DFT Application studies Conclusions 2016-11-17 17/24

Outline of talk

UCL

- Application studies 4

HSE-3c based 'low-cost' DFT Introduction and motivation The D3 London dispersion model Application studies Conclusions 2016-11-17 18/24

Crystal structure prediction challenge

[±]UCL

2016-11-17

18/24

^[20] S. Price, Chem. Soc. Rev. 43, 2098 (2014)

[21] M. Neumann, F. Leusen, J. Kendrick, Angew. Chem. Int. Ed. 47, 2427 (2008)

Introduction and motivation The D3 London dispersion model HSE-3c based 'low-cost' DFT Application studies Conclusions

Promising results in the 6th blind test

UCL

^[22] A. Reilly, et al. Acta Cryst. B, 72, 439 (2016), ^[23] JGB, S. Grimme Acta Cryst. B, 72, 502 (2016)

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 19/24

Squaric acid: simple crystal with interesting properties

Experimental interest

- dibutylester has medical applications in skin treatments^[25]
- reagent for chemical synthesis

Theoretical challenge

- strong hydrogen bonds within and vdW stacking between layers
- phase transition from antiferro- to paraelectric^[26]

^[25]A. M. Holzer, W. R. Kaplan, J. Drugs. Dermatol., 5, 410 (2006)

^[26]K. T. Wikfeldt, A. Michaelides, J. Chem. Phys., 140, 041103 (2014)

Introduction and motivation The D3 London dispersion model HSE-3c based 'low-cost' DET Application studies 2016-11-17 20/24

Inelastic neutron scattering confirms

 computed phonon modes
 out of plane bending of Hydrogens ((x1000 cm⁻¹) important for paraelectric phase transtion^[27]

^[27] in preparation

Introduction and motivation The D3 London dispersion model HSE-3c based 'low-cost' DFT Application studies Conclusions 21/24 2016-11-17 Dr. Brandenburg – London Centre for Nanotechnology – University College London

Quasi-harmonic treatment reveals strong anisotropic expansion

- substantial zero-point effect on unit cell
- predicted expansion in good agreement with new temperature dependent neutron scattering measurements^[27]

^[27]in preparation

Introduction and motivation The D3 London dispersion model HSE-3c based 'low-cost' DFT Application studies Conclusions 2016-11-17 22/24

Summary

Conclusions

- cost-efficient method for routine electronic structure calculations needed
- HSE-3c is a promising new composite scheme
- good results in 6th CSP blind test

Outlook and possible improvements

- methods will be available in CRYSTAL17
- use quasi-harmonic treatment to map out full phase diagrams $\Delta G(T, P)$

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 23/24

Acknowledgements

LICL

Collaborators

- Stefan Grimme (Bonn)
- Sally Price (London)
- Angelos Michaelides (London)
- Felix Fernandez-Alonso (Harwell Oxford)
- Funding

- Eike Caldeweyher (Bonn)
- Bartolomeo Civalleri (Torino)
- Roberto Orlando[†] (Torino)
- Anthony Reilly (Cambridge)

Introduction and motivation The D3 London dispersion model HSE-3c based 'low-cost' DET Application studies Conclusions 2016-11-17 24/24

Acknowledgements

≜UCI

Collaborators

- Stefan Grimme (Bonn)
- Sally Price (London)
- Angelos Michaelides (London)
- Felix Fernandez-Alonso (Harwell Oxford)

- Eike Caldeweyher (Bonn)
- Bartolomeo Civalleri (Torino)
- Roberto Orlando[†] (Torino)
- Anthony Reilly (Cambridge)

Funding

Introduction and motivation The D3 London dispersion model HSE-3c based 'low-cost' DFT Application studies Conclusions 2016-11-17 24/24

Key references

[±]UCL

Dispersion corrections:

S. Grimme, A. Hansen, JGB, C. Bannwarth, Chem. Rev. 116, 5105 (2016)

PBEh-3c and HSE-3c:

S. Grimme, JGB, C. Bannwarth, A. Hansen, *J. Chem. Phys.*, **143**, 054107 (2015) JGB, E. Caldeweyher, S. Grimme, *Phys. Chem. Chem. Phys.*, **18**, 15519 (2016)

DFA-DISP for crystal structure prediction:

JGB, S. Grimme, Top. Curr. Chem, 345, 1 (2014)

JGB, S. Grimme Acta Cryst. B, 72, 502 (2016)

homepage: www.gerit-brandenburg.de

 Introduction and motivation
 The D3 London dispersion model
 HSE-3c based 'low-cost' DFT
 Application studies
 Conclusions

 Dr. Brandenburg – London Centre for Nanotechnology – University College London
 2016-11-17
 24/24