Van der Waals corrections in the DFT framework

Gerit Brandenburg <g.brandenburg@ucl.ac.uk> | 20th of Sept. 2018
Outline of talk

1. Introduction
2. H2 model system
3. Adiabatic connection fluctuation dissipation theorem (ACFDT)
4. Van der Waals inclusive density functional approximations
5. Show-cases
6. Conclusions
Recommended literature

Other review articles

Understanding phenomena in nature

How can a Gecko stick to a glass wall?
- cannot be explained by classical mechanics
- London dispersion (C_6)

Why does a tablet change its properties?
- van der Waals interaction stabilizes tablet dependent on its form
- relevant for production process and dosage
Possible theoretical ansatz

\[H |\psi\rangle = E |\psi\rangle \]

- **exact in principle**
- **semi-local, easier to solve**
- **complicated to solve**
- **no London dispersion**
Outline of talk

1. Introduction
2. H2 model system
3. Adiabatic connection fluctuation dissipation theorem (ACFDT)
4. Van der Waals inclusive density functional approximations
5. Show-cases
6. Conclusions
Definition of the model system

- nuclei fixed, Hilbert space $\mathcal{H}_A = \mathcal{H}_B = \mathcal{L}^2(\mathbb{R}^d)$
- Hamiltonian $\hat{H} = \hat{H}_0^A + \hat{H}_0^B + \hat{H}_I$
- interaction $\hat{H}_I = \frac{1}{R} + \frac{1}{|\mathbf{R} - \mathbf{r}_A + \mathbf{r}_B|} + \frac{1}{|\mathbf{R} - \mathbf{r}_A|} + \frac{1}{|\mathbf{R} + \mathbf{r}_B|}$
- assume R large enough to ignore Fermionic symmetry
- specific form of $\hat{H}_0^{A/B}$ not relevant, only assume rotational symmetry, i.e.

 \[[\hat{H}_0^A, \hat{U}] = 0, \text{ and } \hat{U}|\psi(\mathbf{r}_A, \mathbf{r}_B)\rangle = |\psi(U\mathbf{r}_A, \mathbf{r}_B)\rangle \]
 rotation matrix U (± 1 for one dimension)
Second order perturbation theory

- expand \hat{H}_I in powers of $1/R$:

$$\hat{H}_I = \frac{(r_A r_B) R^2 - 3(r_A R)(r_B R)}{R^5} = \frac{r_A r_B - 3 x_A x_B}{R^3} + \mathcal{O}(R^{-4})$$

- zero order ground state from direct product $|0\rangle = |0_A\rangle |0_B\rangle$

- rotational symmetry $\langle 0_A | r_A | 0_A \rangle = 0$

- zero order energy

$$E_0^0 = \langle 0 | \hat{H}_0 | 0 \rangle = E_A^0 + E_B^0$$

- first order energy

$$E_0^1 = \langle 0 | \hat{H}_I | 0 \rangle = \langle 0 | \frac{1}{R^3} (r_A r_B - 3 x_A x_B) | 0 \rangle + \mathcal{O}(R^{-4}) = 0 + \mathcal{O}(R^{-4})$$
Second order perturbation theory

- second order energy

\[E_0^2 = - \sum_n \frac{|\langle n | \hat{H}_I | 0 \rangle|^2}{E_n - E_0} \]

\[= - \frac{1}{R^6} \sum_n \frac{|\langle n | \mathbf{r}_A \mathbf{r}_B - 3x_Ax_B | 0 \rangle|^2}{E_n - E_0} + \mathcal{O}(R^{-8}) \]

\[= - \frac{1}{R^6} \sum_{n_A} \sum_{n_B} \frac{|\langle n_A n_B | \mu_A \mu_B | 0_A 0_B \rangle|^2}{E_n^A - E_0^A + E_n^B - E_0^B} + \mathcal{O}(R^{-8}) \]

\[= - \frac{6}{R^6} \sum_{n_A} \sum_{n_B} \frac{1}{\omega_{0n}^A + \omega_{0n}^B} \left(|\langle n_A | \mu_A | 0_A \rangle|^2 |\langle n_B | \mu_B | 0_B \rangle|^2 \right) + \mathcal{O}(R^{-8}) \]

- excitation energies \(\omega_{0n}^A = E_n^A - E_0^A \), spherical dipole operators \(\mu_A \)

- MacLachlan integral identity \(\frac{1}{A+B} = \frac{2}{\pi} \int d\omega \frac{\omega_{AB}}{(A^2+\omega^2)(B^2+\omega^2)} \)
Second order perturbation theory

- second order energy

\[E_0^2 = - \frac{1}{R^6} \frac{3}{\pi} \int d\omega \left[\sum_{n_A} \frac{\omega_0^A n_A \langle n_A | \mu_A | 0_A \rangle^2}{\omega_0^A - (i\omega)^2} \right] \left[\sum_{n_B} \frac{\omega_0^B n_B \langle n_B | \mu_B | 0_B \rangle^2}{\omega_0^B - (i\omega)^2} \right] \]

\[= - \frac{1}{R^6} \frac{3}{\pi} \int d\omega \alpha^A(i\omega) \alpha^B(i\omega) \]

- dynamical dipole polarizabilities \(\alpha^A/B \)

- dispersion coefficients \(C_{AB}^6 = \frac{3}{\pi} \int d\omega \alpha^A(i\omega) \alpha^B(i\omega) \)

- well known expression for London dispersion energy

\[E_0^2 = - \frac{C_{AB}^6}{R^6} \]
Absence of $1/R^7$ terms

- Inversion operator: $\hat{l}|\psi(r_A, r_B)\rangle = |\psi(-r_A, -r_B)\rangle$
- \hat{l} is symmetry of system: $[\hat{l}, \hat{H}] = 0$
- $|n\rangle$ are eigenstates of \hat{l}, $\hat{l}^2 = 1$, $\hat{l}r_A\hat{l} = -r_A$
- Split perturbation sum

$$E_0^2 = -\sum_n \left| \frac{\langle n|\hat{H}_l|0\rangle}{E_n - E_0} \right|^2$$

$$= -\sum_n \left| \frac{\langle n|\hat{H}_l|0\rangle}{E_n - E_0} \right|^2 - \sum_n \left| \frac{\langle n|\hat{H}_l|0\rangle}{E_n - E_0} \right|^2$$

- No mixed terms of even and uneven power of R possible
 \rightarrow No R^{-7} term in second order expansion
Consistency of perturbation expansion

- for consistency, higher order expansion of \hat{H}_i in first order energy needed
- rewrite first order energy

$$E^1_0 = \langle 0 | \hat{H}_i | 0 \rangle = \langle 0_B | V_A(R) - V_A(R + r_B) | 0_B \rangle$$

$$V_A(r) = \langle 0_A | \frac{1}{r} - \frac{1}{|r - r_A|} | 0_A \rangle$$

$$= \langle 0_A | - \frac{rr_A}{r^3} + \frac{r_A^2}{2r^3} - \frac{3(rr_A)^2}{2r^5} + \mathcal{O}(r^{-4}) | 0_A \rangle$$

- employ identity $\langle 0_A | |r_A|^2 | 0_A \rangle |r|^2 = d \langle 0_A | |rr_A|^2 | 0_A \rangle$
- characteristic length $a^2 = \frac{\langle 0_A | |r_A|^2 | 0_A \rangle}{d}$
Consistency of perturbation expansion

- first order energy

\[E_0^1 = \frac{3(3 - d)(5 - d)a^2}{4} \frac{1}{R^5} + O(R^{-7}) \]

- for \(d = 3 \), first order term vanishes and attractive \(R^{-6} \) is the leading order
- for \(d = 1, 2 \), \(E_0^1 \) is nonzero and repulsive \(R^{-5} \) is the leading order

Summary: \(\text{H}_2 \) model

- leading order energy: attractive \(R^{-6} \) in 3D and repulsive \(R^{-5} \) in 1D/2D
- \(C_6 \) dispersion coefficients can be computed from dynamical polarizabilities of separated atoms
Outline of talk

1. Introduction
2. H2 model system
3. Adiabatic connection fluctuation dissipation theorem (ACFDT)
4. Van der Waals inclusive density functional approximations
5. Show-cases
6. Conclusions
Exact expression for correlation energy from response function

\[E_c = -\frac{1}{2\pi} \int_0^1 d\lambda \int dr dr' \frac{1}{|r - r'|} \times \int_0^\infty d\omega [\chi_\lambda(r, r', i\omega) - \chi_0(r, r', i\omega)] \]

- from adiabatic connection fluctuation dissipation theorem\(^1\)
- Coulomb interaction scaled by \(\lambda\)
- linear response of the electron density with respect to local perturbation

\[\delta \rho(r, \omega) = \int dr' \chi(r, r', i\omega) \delta V^{\text{ext}}(r', \omega) \]

- relation to dynamic polarizability

\[\alpha_{ij}(i\omega) = \int dr dr' r_i r'_j \chi(r, r', i\omega) \]

In practice not solvable for many-particle systems

\[E_c = -\frac{1}{2\pi} \int_0^1 d\lambda \int d\mathbf{r} d\mathbf{r}' \frac{1}{|\mathbf{r} - \mathbf{r}'|} \times \int_0^\infty d\omega \left[\chi_\lambda (\mathbf{r}, \mathbf{r}', i\omega) - \chi_0 (\mathbf{r}, \mathbf{r}', i\omega) \right] \]

- analytical expression for non-interaction Kohn-Sham system

\[\chi_0 (\mathbf{r}, \mathbf{r}', i\omega) = -4 \sum_{i}^{\text{occ}} \sum_{a}^{\text{virt}} \frac{\omega_{ai}}{\omega_{ai}^2 + \omega^2} \varphi_i (\mathbf{r}) \varphi_a (\mathbf{r}) \varphi_a (\mathbf{r}') \varphi_i (\mathbf{r}') , \]

- occupied and virtual KS orbitals \(\varphi_i \) and \(\varphi_a \)

- \(\chi_\lambda \) too complicated to compute in practice

\[\rightarrow \text{approximation needed} \]

Coarse-graining to atomic contributions leads to significant simplifications

- coarse-grain ACFDT to fragment contributions

 $$E_{\text{disp}}^{AB} = -\frac{1}{2\pi} \int d\omega \int dr_a dr'_a dr_b dr'_b \frac{\chi(r_a, r'_a, i\omega) \chi(r_b, r'_b, i\omega)}{|r_a - r'_a||r_b - r'_b|}$$

- assume vanishing overlap to factorize response function

- integrate fragment response to dynamic polarizabilities

 $$\alpha_{ij}(i\omega) = \int dr dr' r_i r'_j \chi(r, r', i\omega)$$

- expansion of Coulomb operator in multipoles

 $$E_{\text{disp}}^{AB} = -\frac{2}{\pi} \sum_{\alpha,\beta,\gamma,\delta} \left(\nabla_\alpha \nabla_\beta \frac{1}{R} \right) \left(\nabla_\gamma \nabla_\delta \frac{1}{R} \right) \int d\omega \alpha^A_{\alpha\beta}(i\omega) \alpha^B_{\gamma\delta}(i\omega)$$

Spherical averaging and higher order terms beyond dipole-dipole

- spherical averaging of dyn. polarizabilities

\[
E_{\text{disp}}^{AB} = - \frac{3}{\pi} \int \frac{d\omega}{\omega} \alpha_A(\omega) \alpha_B(\omega) \times \frac{1}{R_{AB}^6} + O(R^{-8})
\]

- beyond dipole terms from higher multipole expansion, e.g. \(C_8\) dipole-quadrupole, \(C_{10}\) quadrupole-quadrupole, etc

\[
E_{\text{disp}}^{AB} = - \frac{C_6^{AB}}{R_{AB}^6} - \frac{C_8^{AB}}{R_{AB}^8} - \frac{C_{10}^{AB}}{R_{AB}^{10}} + O(R^{-12})
\]

- beyond pair-wise terms from multi-fragment terms, e.g \(C_9\) dipole-dipole-dipole

\[
C_9^{ABC} = - \frac{3}{\pi} \int \frac{d\omega}{\omega} \alpha_A(i\omega) \alpha_B(i\omega) \alpha_C(i\omega)
\]
Combining vdW correction with mean field model

- sum of fragment contributions for total London dispersion energy

\[E_{\text{disp}} = -\frac{1}{2} \sum_{A,B} \sum_n C_{n}^{AB} \frac{R_{n}^{AB}}{} - \frac{1}{6} \sum_{A,B,C} \sum_n C_{n}^{ABC} \frac{R_{n}^{ABC}}{} F^{\text{geom}} + \mathcal{O}(\text{quadruples}) \]

- singularity at short-range (and expansion not valid)

- introduce short-range damping, motivated by range separation of Coulomb operator

\[E_{\text{tot}}^{AB} = E_{\text{DFT}}^{AB} \text{erf}(\omega R_{AB}) + E_{\text{disp}}^{AB} \text{erfc}(\omega R_{AB}) \]
Outline of talk

1. Introduction
2. H2 model system
3. Adiabatic connection fluctuation dissipation theorem (ACFDT)
4. Van der Waals inclusive density functional approximations
5. Show-cases
6. Conclusions
Many good dispersion corrections exist. Focus on D3 scheme as it can be used at all computational levels. Own work started with extension of D3 type corrections.

Introduction

H2 model

ACFDT

vdW inclusive DFA

Show-cases

Conclusions

Dr. Brandenburg – London Centre for Nanotechnology – University College London

20th of Sept. 2018

Coarse-graining to atomic contributions leads to significant simplifications

- Coarse-grain to atomic contributions

\[\alpha_{ij}(i\omega) = \int \, drdr' \, r_i r'_j \chi(r, r', i\omega) \]

- Expansion of Coulomb operator in multipoles

\[E_{\text{disp}}^{AB} = -\frac{3}{\pi} \int d\omega \alpha_A(i\omega)\alpha_B(i\omega) \times \frac{1}{R_{AB}^6} \]

\[C_6^{AB} \]

- \(C_8^{AB} \) and \(C_9^{AB} \) from recursion relations and averages

\[E_{\text{disp}}^{(D3)} = -\frac{1}{2} \sum_{n=6,8} \sum_{A,B} \frac{C_n^{AB}}{R_{AB}^n} \cdot f_n^d(R_{AB}) - \frac{1}{6} \sum_{A,B,C} \frac{C_9^{ABC}}{R_{ABC}^9} \cdot f_9^d(R_{ABC}, \theta_{ABC}) \]

Dynamic polarizability via linear response DFT

- use frequency domain formalism to get excitation frequencies\[^5\]

\[
\begin{pmatrix}
A & B \\
A^* & B^*
\end{pmatrix}
\begin{pmatrix}
X \\
Y
\end{pmatrix} = \omega
\begin{pmatrix}
X \\
Y
\end{pmatrix}
\]

- orbital rotation matrices

\[
A_{ia,jb} = \delta_{ij} \delta_{ab} (\epsilon_a - \epsilon_i) + \langle ab | 1/r | ij \rangle + \langle ab | f_{xc} | ij \rangle
\]

\[
B_{ia,jb} = \langle aj | 1/r | ib \rangle + \langle aj | f_{xc} | ib \rangle
\]

- approximation: neglect frequency dependence of \(f_{xc} \) and use ground state functional (PBE38)

- similar to random phase approximation with exchange

Geometric coordination number for interpolations of reference C_6

- atoms-in-molecules C_6 by TD-DFT of $\alpha(i\omega)$ on model hydrides
- reference C_6 are mapped to real system via geometrical coordination
- short-range damping avoids double counting \[^{[6]}\]

Semi-classical scheme yields highly accurate dispersion coefficients

D3 correction

- dipole oscillator strength distribution (DOSD) yield $C_6^{\text{exptl.}}$
 (compiled by A. Tkatchenko)
- residual long-range mean absolute relative deviation (MARD) of D3 $< 5\%$ [7]
- deviations are close to intrinsic TD-DFT errors of $\alpha(i\omega)$

Advantages of D3 model

- intermolecular C_6 coefficients are very accurate
- no electronic structure input needed
- computation is extremely fast \sim FF speed
- analytical first (and second) derivatives

Possible shortcomings

- no automatic adjustment to unusual electronic structures[*]
- missing anisotropy of dispersion interaction
- no many-body contributions beyond Axilrod-Teller-Muto term
- high empiricism in short-range damping
Multilevel methodologies: finding the right compromise

<table>
<thead>
<tr>
<th>task/property</th>
<th>example method</th>
</tr>
</thead>
<tbody>
<tr>
<td>accurate QM</td>
<td>L-CCSD(T)</td>
</tr>
<tr>
<td></td>
<td>DMC[^8], FCIQMC</td>
</tr>
<tr>
<td>cheap QM</td>
<td>metaGGA (SCAN-D3[^9])</td>
</tr>
<tr>
<td></td>
<td>HSE-3c[^10]</td>
</tr>
<tr>
<td>very cheap QM</td>
<td>semi-empirical</td>
</tr>
<tr>
<td></td>
<td>HF-3c[^11,12], DFTB3-D3[^13]</td>
</tr>
<tr>
<td>force field</td>
<td>transferable or molecule specific (QM derived) FF</td>
</tr>
</tbody>
</table>

Simple input of D3 dispersion correction in CRYSTAL17

old calculation

MOLECULE
40
2
6 1.209708 0.698426 0.000000
1 2.152747 1.242889 0.000000
BASISSET
def2−mTZVP
DFT
PBE
END
END

new D3 inclusive calculation

MOLECULE
40
2
6 1.209708 0.698426 0.000000
1 2.152747 1.242889 0.000000
BASISSET
def2−mTZVP
DFT
PBE−D3
END
END

DFT−D3 DISPERSION ENERGY CORRECTION

D3 DISPERSION ENERGY (AU) −1.0948042757474E−02
TOTAL ENERGY + DISP (AU) −2.3201130812713E+02

- combinable with geometry optimization, frequencies, QHA, etc.
- impact of D3 should be tested for all DFT applications
Outline of talk

1. Introduction
2. H2 model system
3. Adiabatic connection fluctuation dissipation theorem (ACFDT)
4. Van der Waals inclusive density functional approximations
5. Show-cases
6. Conclusions
Numerical convergence & different functional approximations

- check literature if similar systems have been studied
- are high-level theory data available?
 → use those or generate your own
- are experimental references available?
 → be careful to compare the right observables
- converge all numerical thresholds
 (basis set, \(k \)-point sampling, SCF/geometry thresholds)
- different methods in terms of computational efficiency and accuracy
 → influence of XC treatment (PBE vs. BLYP vd. SCAN vs. PBE0)
 → vdW correction should always be included (D3, MBD, XDM, vdW-DF2)
- use affordable method with acceptable accuracy
 if none exist abandon project
Guinea pig for testing vdW interactions

Noble gas assemblies

- binding solely from electron correlation effects
Guinea pig for testing vdW interactions

Benzene dimer and crystal

- zero-point and thermal effects crucial for comparing to measurement
- error bar in volume mainly from QHA back-correction (about 1%)

Introduction ······· H2 model ······· ACFDT ······· vdW inclusive DFA ········ Show-cases ········ Conclusions
Dr. Brandenburg – London Centre for Nanotechnology – University College London

20th of Sept. 2018 28/39
High-level QM data needed to test DFT for organic solids

- substantial uncertainties in $H_{\text{sub}}^{\text{exp}}$ and thermodynamic corrections \footnote{W. Acree, J. S. Chickos, J. Phys. Chem. Ref. Data 39, 043101 (2010).}
- high-level data needed to judge approximate methods
High-level QM data needed to test DFT for organic solids

- substantial uncertainties in $H_{\text{sub}}^{\text{exp}}$ and thermodynamic corrections \[14\]
- high-level data needed to judge approximate methods

Modern DFT-D methods have excellent accuracy

- benzene crystal purely vdW bonded
- significant effect of many-body dispersion
Choosing the right functional and basis set combination

- effect of semi-local functional as important as many-body dispersion
- significant BSSE up to triple-ζ basis sets
Choosing the right functional and basis set combination

- ice VIII: high-density phase
- BSSE even stronger in H-bonded systems
Many properties depend on the polymorphic form of a crystal

Polymorphism

- ability of a molecule to crystallize in more than one structure\(^{[15]}\)
- properties change with crystal packing, e.g. solubility, color, etc.\(^{[16]}\)

- late appearing polymorph disrupted supply of antiviral drug ritonavir\(^{[17]}\)

→ Tools to predict possible polymorphs would be valuable

→ High accuracy \(~1\) kJ/mol needed

Sampling and energetic ranking for crystal structure prediction

molecular diagram of ROY

CSP

Crystal Structure Prediction

crystal energy landscape

-130
-125
-120
-115

lattice energy / kJ mol⁻¹

1.3
1.4
1.5

density / g cm⁻³

Properties of ROY polymorphs

categorized

Red prism
P-1, θ=21.7°

Orange Red Plate
Pbca, θ=39.4°

Orange Needle
P2₁/c, θ=52.6°

Yellow prism
P2₁/n, θ=104.7°

H2 model

ACFDT

vdW inclusive DFA

Show-cases

Conclusions

Introduction

FF

size of sampling space

>1,000,000

>1,000

<100

methodology

classical force fields

semiempirical

ab-initio

most stable

most stable

improve lattice energy model

reduce polymorph space

Dr. Brandenburg – London Centre for Nanotechnology – University College London

Promising results in the 6th blind test

<table>
<thead>
<tr>
<th>Method</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBE</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>PBE-D3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PBE-MBD</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>vdw-DF2</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>M06L</td>
<td>1</td>
<td>4</td>
<td>13</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

lattice energy on fixed TPSS-D3 structures

- good lattice energy based ranking of PBE-D3
- impact of free energy contributions estimated to $\sim 1-3$ kJ/mol[20,21]

Crystal packing dependent properties II

bond isomerization[22]

spin crossover[23]

co-adsorption on graphite

Fast electronic structure for large systems

- fast computer code CRYS\[26\]TAL17 with cost-efficient methods\[11\]
- enabling routine electronic structure calculation of large systems

Summary

Take-home messages

- D3 London dispersion interaction arises in second order perturbation theory.
- \(C_6 \) based dispersion corrections are most efficient in DFT framework.
- DFT-D methods show excellent performance for organic crystals.
- D3, gCP, and composite methods implemented in CRYSTAL17.
Key references

- Dispersion corrections:

- DFT development

- DFA-DISP for crystal structure prediction:
 DOI: 10.1039/C8FD00010G
 S. L. Price, JGB, Molecular Crystal Structure Prediction, G. DiLabio, A.

- homepage: gerit-brandenburg.de