

Towards the design of molecular materials

Gerit Brandenburg <j.g.brandenburg@gmx.de> | August 22, 2019

TALK AT 32ND EUROPEAN CRYSTALLOGRAPHIC MEETING, VIENNA, AUSTRIA

Many properties depend on the polymorphic form of a crystal

tools to predict possible polymorphs would be valuable^[2]

 \rightarrow Simulation methods aim at complementing experimental screening

^[1] J. Bauer, et al., J. Pharm. Res. 18, 859-866 (2001).

^[2] S. L. Price, JGB, Molecular Crystal Structure Prediction; Elsevier Australia ISBN: 9780128098356 (2017).

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions

Dr. Brandenburg - Heidelberg University

August 22, 2019 2/24

Predict most stable crystal polymorphs based on the molecular diagram

The inability to predict something as simple as how a molecule would crystallize is one of the continuing scandals in the physical sciences.^[3-5]

Task

- molecule is chosen due to its chemical/physical/biological properties
- based on the molecular diagram only, the most stable crystal structures should be predicted
- predict properties of interest for the most promising candidates

^[3] A. Gavezzotti, Acc. Chem. Res. 27, 309-314 (1994). ^[4] J. Maddox, Nature 335, 201-201 (1988).

^[5] K. N. Houk, F. Liu, Acc. Chem. Res. 50, 539 (2017).

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions

Dr. Brandenburg - Heidelberg University

August 22, 2019 3/24

Sampling and energetic ranking for crystal structure prediction

Layers of complexity:

- molecular conformational space
- space groups (varying orientation, conformation, etc.)
- polymorph ranking according to free energy^[6,7]

^[6] S. Price, *Chem. Soc. Rev.* **43**, 2098 (2014)

^[7] S. L. Price, <u>JGB</u>, *Molecular Crystal Structure Prediction*; Elsevier Australia, 336-363 (2017).

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions

Dr. Brandenburg - Heidelberg University

August 22, 2019 4/24

Results of the 6th blind test for organic crystal structure prediction

No group had a perfect sampling and ranking of structures^[8,9]

^[8] A. Reilly, et al. Acta Cryst. B, **72**, 439 (2016). ^[9] J. G. Brandenburg, S. Grimme, Acta Cryst. B, **72**, 502 (2016).

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions

Dr. Brandenburg - Heidelberg University

August 22, 2019 5/24

CSP bind test highlights two remaining challenges

1. Ranking stage

Crystal polymorphs are often separated by just a few kJ/mol, exceeding the accuracy of standard density functional approximations (DFAs). \implies Are many-body methods feasible?

2. Sampling stage

Dealing with a vast search space, in particular for molecules with increased flexibility, one has to cover too many structures at DFT accuracy. \implies Can we improve modern DFAs & employ ML techniques?

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions

Dr. Brandenburg - Heidelberg University

August 22, 2019 6/24

Outline of talk

Introduction: Setting the stage

- 2 Crystal structure prediction of flexible pharmaceutical-like molecules
- 3 High-level energies for molecular crystals
- 4 Machine learning enhanced crystal structure prediction
- 5 Conclusions and Future Perspective

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions

Dr. Brandenburg - Heidelberg University

August 22, 2019 6/24

Challenge of treating the flexibility of large pharmaceutical-like molecules

- ritonavir is API with typical flexibility
- need of fast electronic structure method that can treat flexibility

Density Functional Tight Binding (DFTB3-D3):

3rd order, self consistent charges, 3OB atom-pair parameter, D3 dispersion

- huge speed-up compared to DFT (~4 orders of magnitudes)
- full treatment of all degrees of freedom
- good experience for proteins & energies of small molecular crystals

^[10] A. S. Christensen, T. Kubař, Q. Cui, M. Elstner, Chem. Rev. 116, 5301 (2016).

^[11] <u>JGB</u>, S. Grimme, *J. Phys. Chem. Lett.* **5**, 1785 (2014).

 Introduction
 CSP: Flexible molecules
 High-level energies
 ML enhanced CSP
 Conclusions

 Dr. Brandenburg – Heidelberg University
 August 22, 2019
 7/24

Focus on flexible molecules with previous CSP studies

Possible advantages of DFTB3-D3 as an (intermediate) CSP step

(1) improving geometries

(3) reducing # minima

(2) improving energy ranking

(4) free energy contributions

 Introduction
 CSP: Flexible molecules
 High-level energies
 ML enhanced CSP
 Conclusions

 Dr. Brandenburg – Heidelberg University
 August 22, 2019
 7/24

Though poor energetic ranking geometries improved

- 2.2 Mio structures generated for XXVI, 9000 processed to reranking
- experimental polymorph is rather high in energy by DFTB3-D3
- successful reranking using rigid DFTB3-D3 structure

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions 8/24

Though poor energetic ranking geometries improved

- 2.2 Mio structures generated for XXVI, 9000 processed to reranking
- experimental polymorph is rather high in energy by DFTB3-D3
- successful reranking using rigid DFTB3-D3 structure

Though poor energetic ranking geometries improved

- 2.2 Mio structures generated for XXVI, 9000 processed to reranking
- experimental polymorph is rather high in energy by DFTB3-D3
- successful reranking using rigid DFTB3-D3 structure
- final energy landscape: no important structure is lost

 Introduction
 CSP: Flexible molecules
 High-level energies
 ML enhanced CSP
 Conclusions

 Dr. Brandenburg – Heidelberg University
 August 22, 2019
 10/24

Impact of harmonic free energy contributions to relative stability

- significant impact of ZPE and thermal contribution on relative stability
- modified ranking of several putative polymorphs
- treating molecules as rigid underestimates the free energy
- rigid-body estimate: 9% of polymorph change stability upon including thermal contributions

^[12] A.J. Cruz-Cabeza, J. Bernstein, Chem. Rev. 114 2170 (2014).

^[13] J. Nyman, G. M. Day, CrystEngComm 17, 5154 (2015).

 Introduction
 CSP: Flexible molecules
 High-level energies
 ML enhanced CSP
 Conclusions

 Dr. Brandenburg – Heidelberg University
 August 22, 2019
 11/24

Possible merits of DFTB3-D3

- (1) improving geometries yes
- (2) improving energy ranking **no**
- (3) reducing # minima partially
- (4) free energy contributions yes

^[14] L. Iuzzolino, P. McCabe, S. L. Price, <u>JGB</u>, *Faraday Discuss.* **211**, 275 (2018).

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions

Dr. Brandenburg - Heidelberg University

August 22, 2019 12/24

Outline of talk

Introduction: Setting the stage

- 2 Crystal structure prediction of flexible pharmaceutical-like molecules
- 3 High-level energies for molecular crystals
- 4 Machine learning enhanced crystal structure prediction
- 5 Conclusions and Future Perspective

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions

Dr. Brandenburg - Heidelberg University

August 22, 2019 13/24

Methods with 'benchmark quality' for noncovalent interactions

CCSD(T)

- + 'gold standard' of quantum chemistry
- + linear scaling variants
- pair-screening thresholds
- slow basis set convergence
- non-trivial to parallelize (shared memory: 100 GB/core)

DMC

- + exact projection to ground state
- + N³ scaling, [-] huge prefactor
- + fast basis set convergence
- + scaleable to HPCs
- stochastic error
- uncertainties from FN and non-local pseudopotentials

No benchmark quality: MP2, RPA, CCSD, CCSD(T)/cc-pVTZ, VMC

Introduction

CSP: Flexible molecules High-level energies

ML enhanced CSP

Conclusions

Dr. Brandenburg - Heidelberg University

August 22, 2019 13/24

Quantum Monte-Carlo in a nutshell: A scalable high-level method

Fixed-node diffusion Monte-Carlo

- Enforce nodal surface of Fermions $\Gamma = \{\mathbf{R}; |\Psi_T\rangle = 0\}$
- 2) Walkers in configuration space $|\Psi_{T}(\mathbf{R},\tau)\rangle = \text{hist}\left[\sum \delta(\mathbf{R}-\mathbf{R}_{\mathbf{i}}(\tau))\right]$
- 3) Diffusion in imaginary time $\partial_{\tau} |\Psi_{T}(\mathbf{R}, \tau)\rangle = \left[\frac{1}{2} \nabla_{\mathbf{R}}^{2} - (V - E_{T})\right] |\Psi_{T}(\mathbf{R}, \tau)\rangle$
- Projection to exact ground state $|\Psi_{0}(\mathbf{R})\rangle = \lim_{T \to \infty} \exp\left[-\tau(\hat{H} - E_{T})\right] |\Psi_{T}(\mathbf{R}, \tau)\rangle$

- exact within Γ and $d\tau \rightarrow 0$ and $\tau \rightarrow \infty^{[15]}$
- new DMC algorithms lead to substantial speed up^[16]

^[15] Chem. Rev. **116**, 5188 (2016) ^[16] A. Zen, S. Sorella, M. J. Gillan, A. Michaelides, D. Alfé, Phys. Rev. B **93**, 241118(R) (2016).

CSP: Flexible molecules Introduction High-level energies ML enhanced CSP 14/24

Dr. Brandenburg - Heidelberg University

August 22, 2019

Molecular crystals as challenging test

- strong H-bonds, vdW of saturated and unsaturated molecules
- problematic for all readily applicable methods (DFA-DISP, MP2)

QMC delivers (sub-) chemical accuracy for all tested systems

- excellent agreement with experiment and CCSD(T)
- uncertainty in H_{sub}^{exp} probably larger than DMC errors

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions 16/24 August 22, 2019

Dr. Brandenburg - Heidelberg University

QMC is feasible within one day on standard computer cluster

- up to three orders of magnitude speed-up compared to best DMC practice two years ago
- significance will extend to all classes of systems^[17]

^[17] A. Zen, JGB, J. Klimeš, A. Tkatchenko, D. Alfè, A. Michaelides, Proc. Natl. Acad. Sci. U.S.A , 115, 1724 (2018).

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions

Dr. Brandenburg - Heidelberg University

August 22, 2019 17/24

Outline of talk

Introduction: Setting the stage

- 2 Crystal structure prediction of flexible pharmaceutical-like molecules
- 3 High-level energies for molecular crystals
- 4 Machine learning enhanced crystal structure prediction
- 5 Conclusions and Future Perspective

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions

Dr. Brandenburg - Heidelberg University

August 22, 2019 18/24

Employing ML to enhance CSP workflow

- 1. Generate putative structures with crude FF stability
- 2. Construct a divers subset of structures
- 3. Compute DFT stability on subset
- Train a high-dimensional NNP on DFT references
- 5. Recompute stability of all structures employing the NNP

^[18] V. L. Deringer, D. M. Proserpio, G. Csányi, and C. J. Pickard, *Faraday Discuss.* 211, 45 (2018).

^[19] E. V. Podryabinkin, E. V. Tikhonov, A. V. Shapeev, and A. R. Oganov, *Phys. Rev. B* 99, 064114 (2019).

^[20] JGB and J. Behler, in preparation.

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions

August 22, 2019 18/24

High-dimensional neural network for benzene crystal landscape

Energy decomposed to atomic contributions

$$E_{\text{tot}} = \sum_{i}^{\text{atoms}} E_i \left[Z_i, G(\{R_j\}) \right]$$

- symmetry functions as local geometry descriptors G^[21-23]
- element specific feed-forward neural network (2 hidden layers, 25 nodes each)
- training based on electronic energies and nuclear forces

^[21] J. Behler and M. Parrinello, *Phys. Rev. Lett.* 98, 146401 (2007).

^[22] J. Behler, J. Chem. Phys. **134**, 074106 (2011).

^[23] J. Behler, Angew. Chem. Int. Ed. 56, 12828 (2017).

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions

August 22, 2019 19/24

Stable training on 10% of generated putative polymorphs

neural network delivers sub-chemical accuracy

CSP cost reduced by one order of magnitude ^[20]

^[20] JGB and J. Behler, in preparation.

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions

Dr. Brandenburg - Heidelberg University

August 22, 2019 20/24

Employing ML to enhance CSP workflow

- EOS within 1 kJ/mol for ho <1.1 g/cm³, large errors for ho >1.2 g/cm³
- too few data points to generate globally smooth EOS

^[20] JGB and J. Behler, <i>in preparation</i> .		
Introduction CSP: Flexible molecules High-level energies	ML enhanced CSP	Conclusions
Dr. Brandenburg – Heidelberg University	August 22, 2019	21/24

Outline of talk

Introduction: Setting the stage

- 2 Crystal structure prediction of flexible pharmaceutical-like molecules
- 3 High-level energies for molecular crystals
- 4 Machine learning enhanced crystal structure prediction

5 Conclusions and Future Perspective

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions

Dr. Brandenburg - Heidelberg University

August 22, 2019 22/24

Remaining challenges in crystal structure prediction

- Thermodynamics of crystals, i.e. full PT phase diagram
- Kinetics of crystallization
- Reducing the human and CPU time for prediction

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Dr. Brandenburg - Heidelberg University

August 22, 2019 23/24

Conclusions

Summary

- Fast electronic structure methods to treat flexible molecules
- High-level solution of Schrödinger eq. for accurate energies
- Enhancing CSP by machine learning

Acknowledgements

PhD / Postdocs

Andrea Zen

Benjamin Ramberger

Theodoros

Tsatsoulis

Eike Caldeweyher Luca luzzolino

Michaelides (UCL)

Grimme (Bonn)

Price (UCL)

Alfè (UCL)

Tkatchenko

Grüneis (Vienna) Civalleri (Turin)

Maschio (Turin)

Antreas Afantitis (NovaMechanics)

Principal investigator

Klimes (Prague) (Luxembourg)

Perdew (Temple) Kresse (Vienna) Behler (Göttingen) Rebecca Sure (BASF)

UNIVERSITÄT HEIDELBERG

Introduction

Dr. Brandenburg - Heidelberg University

Acknowledgements

PhD / Postdocs

Andrea Zen

Benjamin Ramberger

Theodoros

Eike Caldeweyher Luca luzzolino

Michaelides (UCL)

Grimme (Bonn)

Price (UCL)

Tkatchenko

(Luxembourg)

Maschio (Turin)

Antreas Afantitis (NovaMechanics)

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP

Conclusions

Dr. Brandenburg - Heidelberg University

August 22, 2019 24/24

UNIVERSITÄT HEIDELBERG

Perdew (Temple) Kresse (Vienna) Behler (Göttingen) Rebecca Sure (BASF)

Key references

Crystal structure prediction:

S. L. Price, <u>JGB</u>, *Molecular Crystal Structure Prediction*, G. DiLabio, A. Otero-de-la-Roza, Eds., Elsevier Australia, 336-363 (2017).

L. luzzolino, P. McCabeb, S. L. Price, <u>JGB</u>, Faraday Discuss. 211, 275 (2018).

QMC for molecular crystals:

A. Zen, JGB, J. Klimeš, A. Tkatchenko, D. Alfè, A. Michaelides, *Proc. Natl. Acad. Sci. U.S.A.* **115**, 1724 (2018).

DFT development

- S. Grimme, A. Hansen, JGB, C. Bannwarth, Chem. Rev. 116, 5105 (2016).
- E. Caldeweyher, JGB, J. Phys.: Condens. Matter 30, 213001 (2018).

website: gerit-brandenburg.de

Introduction CSP: Flexible molecules High-level energies ML enhanced CSP Conclusions